AAC Encoding Detection and Bitrate Estimation using a Convolutional Neural Network

Daniel Seichter ^{#*}, Luca Cuccovillo [#], Patrick Aichroth [#]

Output v

Fraunhofer Institute for Digital Media Technology, * Ilmenau University of Technology

Overview

- AAC encoding detection and bitrate estimation
 - Blind analysis of PCM material
 - Based on a Convolutional Neural Network (CNN)
 - Accuracy of 94.56% by analysis of only 116.10 ms of content

Figure 1 – CNN for AAC encoding detection

4x

Robust algorithm for AAC detection

Which input features?

Conv Input X

- MDCT coefficients hold important encoding traces
- Must be extracted using the correct offset and window shape
- Both the evolution in time and in the frequency domain are relevant

Figure 2 – Input features for AAC detection

Which classifier?

- Deep Networks can handle high input variability
- Custom features too sensitive to the specific testing setup
- Local connectivity of CNNs is able to correctly handle and describe both time and frequency domain

Figure 3 – Local connectivity of CNNs

Experimental Setup

- Content preparation
 - Training, validation and test set are completely disjoint
 - Full range of available bitrates was covered
 - 50 files with varying content, unrelated to each other
 - Elementary test examples consist of 4 overlapping AAC frames

Target Set	Amount per class (#)						
	Files	Segments	Frames	Examples			
Training	20	920	77280	19320			
Validation	10	460	38620	9660			
Test	20	920	77280	19320			

Figure 4 – Content setup for CNN training, validation and testing

Result Analysis

Direct application of the CNN

- Uses 4 AAC overlapping frames to create an example 16.10 ms long
- Output class directly related to the highest output of the CNN
- Average accuracy of 94.65%

	PCM	32	48	64	96	128	192	256	320
PCM	94.7	0.1	0.1	0.9	2.4	0.7	0.4	0.5	0.2
32	0.0	96.9	3.0	0.1	0.0	0.0	0.0	0.0	0.0
48	0.0	5.9	91.0	3.1	0.0	0.0	0.0	0.0	0.0
64	0.0	0.1	1.2	97.7	1.0	0.0	0.0	0.0	0.0
96	0.0	0.0	0.0	0.6	98.8	0.5	0.1	0.0	0.0
128	0.1	0.0	0.0	0.1	3.4	95.7	0.6	0.1	0.0
192	0.0	0.0	0.0	0.0	0.6	0.8	94.5	3.9	0.2
256	0.2	0.1	0.0	0.1	0.3	0.1	8.3	90.6	0.3
320	0.7	0.1	0.0	0.2	0.3	0.1	1.2	5.4	92.0

Figure 5 – Confusion matrix with 116.10 ms of content

Score-based fusion of the CNN output

- Uses 21 network examples to create a segment of 2 s duration
- Output class related to the highest output of the CNN after fusion
- Average accuracy of 97.9%

	PCM	32	48	64	96	128	192	256	320
PCM	96.9	0.0	0.0	0.2	2.6	0.3	0.0	0.0	0.0
32	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48	0.0	1.5	98.1	0.4	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
96	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0
128	0.0	0.0	0.0	0.0	2.2	97.8	0.0	0.0	0.0
192	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
256	0.0	0.0	0.0	0.0	0.0	0.0	6.1	93.9	0.0
320	0.1	0.0	0.0	0.0	0.1	0.0	0.8	4.5	94.5

Figure 6 – Confusion matrix with 2 s of content

QR-code to the project website: http://s.fhg.de/idmt-audioforensics TECHNISCHE UNIVERSITÄT

