
AAC Encoding Detection and Bitrate Estimation
using a Convolutional Neural Network

Daniel Seichter #*, Luca Cuccovillo #, Patrick Aichroth #

Which input features?
– MDCT coefficients hold important encoding traces

– Must be extracted using the correct offset and window shape

– Both the evolution in time and in the frequency domain are relevant

Overview

Robust algorithm for AAC detection

AAC encoding detection and bitrate estimation
– Blind analysis of  PCM material

– Based on a Convolutional Neural Network (CNN)

– Accuracy of 94.56% by analysis of only 116.10 ms of content

Figure 6 – Confusion matrix with 2 s of content 

Target Set
Amount per class (#)

Files Segments Frames Examples

Training 20 920 77280 19320

Validation 10 460 38620 9660

Test 20 920 77280 19320

Figure 1 – CNN for AAC encoding detection

QR-code to the project website:

http://s.fhg.de/idmt-audioforensics
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Figure 2 – Input features for AAC detection

Which classifier?
– Deep Networks can handle high input variability

– Custom features too sensitive to the specific testing setup

– Local connectivity of CNNs is able to correctly handle and describe both 
time and frequency domain

Figure 3 – Local connectivity of CNNs 
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Result Analysis
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Figure 5 – Confusion matrix with 116.10 ms of content 

Direct application of the CNN
– Uses 4 AAC overlapping frames to create an example 16.10 ms long

– Output class directly related to the highest output of the CNN

– Average accuracy of 94.65% 

Score-based fusion of the CNN output
– Uses 21 network examples to create a segment of 2 s duration

– Output class related to the highest output of the CNN after fusion

– Average accuracy of 97.9%

Experimental Setup

Content preparation
– Training, validation and test set are completely disjoint

– Full range of available bitrates was covered

– 50 files with varying content, unrelated to each other

– Elementary test examples consist of 4 overlapping  AAC frames

Figure 4 – Content setup for CNN training, validation and testing

Sorted MDCT coefficients
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