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Different phenomena modeled as network diffusion

* Propagation of a disease
in human population

* Dissemination of information
in a social network

* Spreading of a computer virus
in a communication network

source
Source of diffusion node

e Patient zero
e Trendsetter

e 1% infected computer

Limited access to state of the network nodes

* Network size
* Privacy issues
* Cost of observation
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Research on network diffusion

e parameters of network diffusion
e source localization with or without timestamps of infection

» strategies for selection of the nodes that are observed:
offline, mostly simulation-based
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Contributions

* sequential dynamic selection
* theoretical analysis of the optimal selection strategy
: show it is combinatorial problem even with the simplified assumptions
§ provide optimal solution
2 derive efficient approximation, yet with guarantees
2 gain insight for more complex assumptions
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Sequential identification of the source
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Sequential identification of the source
Network node

* Information about the source
through its observation:
timestamp of infection

e Cost of observation
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Sequential identification of the source
Network node

* Information about the source
through its observation:
timestamp of infection

e Cost of observation

NO

Total cost of source identification
= sum of costs of observers
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Sequential identification of the rumor source

Each site/blog has

* Timestamp when it posted
information

* Cost (time, effort) of
accessing the site

13@



Carnegie Mellon

Problem statement

1. Find a selection strategy such that the source can be
unambiguously localized with the smallest total cost.
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Problem statement

1. Find a selection strategy such that the source can be
unambiguously localized with the smallest total cost.

2. For a fixed number of observer nodes find a selection
strategy that would result with the smallest number of
source candidates.
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Proposed approaches

Approach Optimality Efficiency

Dynamic

: v
programming

Greedy v
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Proposed approaches

. . . Performance
Approach Optimality Efficiency guarantees
Dynamic . v v
programming
Greedy
(adaptive v v
submodularity)
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A simple model of network diffusion

= Single source node
= Nodes either susceptible or infected

= Nodes infected at time t infect neighbors

with probability 1 at next time step t+1 source

. . . L node
» Times of infections deterministic:

distance to the source
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Source is localized based on the infection times of observed nodes

Observer
node 1
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Source is localized based on the infection times of observed nodes
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Source is localized based on the infection times of observed nodes

Observer

node 2
t=2

Source
candidate

Observer
node 1
t=2

Total cost incurred = cost of observing Observer 1 + cost of observing Observer 2
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Problem 1 formulation

Find a selection strategy it such that the source can
be unambiguously localized with the smallest cost.

minE; [¢ (O (m))]

T

subject to d(O (7),s) # d(O (7),i), Vs € V,s £ 1,
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Problem 1 formulation

Find a selection strategy it such that the source can
be unambiguously localized with the smallest cost.

subject t >

average taken over cost c incurred by observing a subset of
all possible sources nodes O chosen by strategy nt

25@



Carnegie Mellon

Problem 1 formulation

Find a selection strategy it such that the source can
be unambiguously localized with the smallest cost.

min Es[c (O (7))]

subject to (O Vs e V,s # 1,

while each source node
has a unique identifier
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Problem 2 formulation

For a fixed number of observer nodes T find a selection
strategy that would result with the smallest number of
source candidates.

mﬂin Es|S (O (7))

subject to |O (m)| < T
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Problem 2 formulation

For a fixed number of observer nodes T find a selection
strategy that would result with the smallest number of
source candidates.

|
ject to |O (m)|

average taken over  number of source candidates given by
all possible sources observing a subset of nodes O chosen
by strategy m

SUup
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Problem 2 formulation

For a fixed number of observer nodes T find a selection
strategy that would result with the smallest number of
source candidates.

mﬂin Es|S (O (7))

subject to |O (m)| < T

while the number of observers
is no more than T
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Solve both problems using dynamic programming with
imperfect state knowledge

Problem is analyzed

e backwards: from the selection of the last observer to the
selection of the first observer, one step at the time

» offline: considering all the possible sources, deriving what should
be the best observer to select for possible observations
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Example: Dynamic programming approach for Problem 1
Analysis for cost incurred by selecting node 2 in the first step

cost
0.7 distance | node 1 | node 2 | node 3 | node 4
node 2 ‘ 1 ‘ 0 ‘ 1 ‘ 1
0.3 ' ' ' '
0.5 0.6

31@



Carnegie Mellon

Example: Dynamic programming approach for Problem 1
Analysis for cost incurred by selecting node 2 in the first step

cost
0.7 distance | node 1 | node 2 | node 3 | node 4
node 2 ‘ 1 ‘ 0 ‘ 1 ‘ 1
0.3 | | | |
e source 1,3,4: t=1, source candidates {1,3,4}, prob 3/4
* source 2: t=0, source candidates {2}, prob 1/4
0.5 0.6
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Example: Dynamic programming approach for Problem 1
Analysis for cost incurred by selecting node 2 in the first step

cost
0.7 distance | node 1 | node 2 | node 3 | node 4
node 2 ‘ 1 ‘ 0 ‘ 1 ‘ 1
0.3 | | | |
e source 1,3,4: t=1, source candidates {1,3,4}, prob 3/4
* source 2: t=0, source candidates {2}, prob 1/4
0.5 0.6

In the previous step, step 2, we have calculated
e cost-to-go of state {1,3,4} as 0.5
e cost-to-go of state {2} as 0
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Example: Dynamic programming approach for Problem 1
Analysis for cost incurred by selecting node 2 in the first step

cost
0.7 distance | node 1 | node 2 | node 3 | node 4
node 2 ‘ 1 ‘ 0 ‘ 1 ‘ 1
0.3 | | | |
e source 1,3,4: t=1, source candidates {1,3,4}, prob 3/4
* source 2: t=0, source candidates {2}, prob 1/4
0.5 0.6

In the previous step, step 2, we have calculated
e cost-to-go of state {1,3,4} as 0.5
e cost-to-go of state {2} as 0

Cost-to-go of selecting node 2= cost(node 2)+(3/4 *0.5+1/4*0)
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Example: Dynamic programming approach for Problem 1
Analysis for cost incurred by selecting node 2 in the first step

cost
0.7 distance | node 1 | node 2 | node 3 | node 4
node 2 ‘ 1 ‘ 0 ‘ 1 ‘ 1
0.3 | | | |
e source 1,3,4: t=1, source candidates {1,3,4}, prob 3/4
* source 2: t=0, source candidates {2}, prob 1/4
0.5 0.6

In the previous step, step 2, we have calculated
e cost-to-go of state {1,3,4} as 0.5
e cost-to-go of state {2} as 0

Cost-to-go of selecting node 2= cost(node 2)+(3/4 *0.5+1/4*0)

Optimal node for step 1 is the node with the smallest cost-to-go.
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Dynamic programming approach for Problem 1:
Selecting an optimal observer for an arbitrary time step k

cost-to-80 = min E sources [cost(o) + cost-to-go (observations)]
step k observer o step k+1
(observations)
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Dynamic programming approach for Problem 1:
Selecting an optimal observer for an arbitrary time step k

cost-to;(go _ bmin E sources [cost(o) + cost-to-go (observations)]
step opserver o Step k.|.1
(observations)

Optimal cost-to-go

observer = argmin step k

step k observer o o
_ observations

(observations) ( )
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Dynamic programming approach for Problem 1:
Selecting an optimal observer for an arbitrary time step k

cost-tol-(go = Iomin E cources [cost(o) + cost-to-go (observations)]
step opserver o Step k.|.1
(observations)

Optimal cost-to-go

observer = argmin step k

step k observer o "
. observations

(observations) ( )

Dynamic programming is optimal, but generally intractable
* combinatorial nature of the problem 38 [
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Efficient approximation, but with performance guarantees

* |In order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 39 W
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity — generalization of diminishing returns

set of items, pick an item
unknown states b
b
g c € z
a d f

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 40 W
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Adaptive submodularity

set of items,
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b !
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity

evaluate utility

set of items, function
unknown states b
b !
9 a d Cf g learn the state
of the item

l

update our posterior
belief about the state
of the world

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 42 W
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Adaptive submodularity

set of items,
unknown states b, f

b e,

gadcf
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity
evaluate utility
set of items, function
unknown states b, f =z
b }
Ja d Cf ‘ learn the state

of the item

l

update our posterior
belief about the state
of the world
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity

set of items,

unknown states b, f z b, f g9 e z
b
g a c € z Shorter Longer
d f sequence sequence

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 46 W
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity
expected increase in utility expected increase in utility
set of items function after adding z = function after adding z
)

unknown states b, f z b, f g9 e z

b

g q c € z Shorter Longer
d .f sequence sequence

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 47 W
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Efficient approximation, but with performance guarantees

* |n order to obtain guarantees we resort to adaptive submodularity* :
if an optimization problem has this property, greedy approach has guarantees

Adaptive submodularity
expected increase in utility expected increase in utility
set of items function after adding z = function after adding z
)

unknown states b, f z b, f g9 e z

b

g q c € z Shorter Longer
d .f sequence sequence

Expectation is taken with different
posterior probability distributions

*D. Golovin, A. Krause, “Adaptive Submodularity: Theory and Applications in Active
Learning and Stochastic Optimization”, Journal of Artificial Intelligence Research, 2011 438 W
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We can reformulate problems 1 and 2 such that they have adaptive
submodularity property

* Introduce utility function f=N-|S(0O)|: number of nodes that are
not source candidates after observing O

* Prove f=N-[5(0)] is adaptive monotone and adaptive
submodular for uniform source prior

* Obtain performance guarantees for greedy selection
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Initial formulation of problem 1

minES [c (O (m))]
subject to d(O (7),s) # d(O (7),i), Vs € V, s £ i,

Reformulation of problem 1 as Adaptive Stochastic Minimum

Cost Cover
min E; [¢ (O (7))]

subject to> N—-1,VseV,s#1
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Initial formulation of problem 2

min E;|S (O (m))|
subject to |O (m)| < T

Reformulate problem 2 as Adaptive Stochastic Maximization

subject to |O (7)| < T.

51@



Carnegie Mellon

Selection of the best observer at step k for the greedy approach

decrease in the

observer  _
at steo k = arg max (0) = [ number of source
P observer o clo current candidates after
source _
. selecting observer o
candidates
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Selection of the best observer at step k for the greedy approach

decrease in the

observer
t step k = argmax —— g [ number of source
at step observer o c(o) ™ current candidates after
source .
, selecting observer o
candidates
Performance guarantees
Problem 1. cost by greedy < optimal cost (log(N(N-1))+1)

Problem 2. # candidates by greedy < optimal #candidates (1-1/e)

+N/
o ) %
53




Cost incurred by different approaches for solving problem 1

 Benchmark against the performance e 100 realizations of
of a weighted random selection small-world networks

* uniform source prior

* node cost random
uniform [0,1]

1.3 baseline: weighted random selection
_g g P - -7 T - T=en ~o
2050 ----Proposed greedy adaptive
03 _---.'"--vo—--—-o-—-—-o _____ o— === = 0-___-“
optimal dynamic programming B J
8 10 12 14 16

Number of nodes
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Time required by different approaches to solve problem 1

 Benchmark against the performance e 100 realizations of
of a weighted random selection small-world networks

* uniform source prior

* node cost random
uniform [0,1]

92
> optimal dynamic programming__
uag _._-_—.____._____.____.-—-""'
5o ST .
= 2, Proposed greedy adaptive | ___.
e e
5 “ baseline: weighted random selection |
8 10 12 14 16

Number of nodes
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Cost incurred by approximate approaches for solving problem 1

 Benchmark against the performance e 100 realizations of
of a weighted random selection small-world networks

* uniform source prior

* node cost random
uniform [0,1]

\—l—‘

-
-
I_‘—\
-
-
| -

100 200 300 400 500

Number of nodes
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Conclusions and future work

Formulated two problems:
" minimize the cost for unambiguous source localization

" minimize the number of source candidates after
observing a prespecified number of nodes

Solved problems optimally with stochastic dynamic
programming

Used adaptive submodularity to formulate a greedy algorithm
with performance guarantees

Future work: extend the model to stochastic propagation time
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