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Feature Detection

* [mage Features:
— Individually distinguishable regions of an image
that can easily be tracked between subsequent

Images
* Corners, Blobs, or T-Sections — Good Features
* White Walls, Straight Lines — Bad Features
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Feature Detection

= Usually image features can be detected and
guantified using geometric or statistical
properties of an image

= Common method for feature detection: Harris

Corner Detection
E(u,v)= Z:[](x+u,y+v)—l(x,y)]2
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Feature Description

= Feature Descriptions:
— Need to be accurate and unique
— Compressed for embedded applications

— Invariant to image deformations:
* Lighting = i
* Rotation
* Scaling
* Blurring
* Perspective

Oxford Affine Image Dataset

SITY

BRIGHAM YOUNG UNIVER
l/“""
\:di
V I S I O N

L A B



Common Feature Description and Matching Algorithms

= SIFT: Scale Invariant Feature Transform
— DoG (Difference of Guassians) to detect scale
invariant features
— Harris Corner and Maxima suppression to filter
points
— Generate a normalized orientation vector as a
descriptor (rotation Invariant)

= SURF: Speeded Up Robust Features
— Similar to SIFT but uses integral images and
Gaussian pyramids to speed algorithm
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Compressed Descriptor Algorithms

= SIFT + SURF costly in terms of space
consumption

= Compressed Description Algorithms:
— BRIEF (Binary Robust Independent Elementary
Features)

— BRISK (Binary Robust Invariant Scalable Key-points)
* Both algorithms use random sampling to generate a
compressed feature description

= Compressed sensing feature descriptor
algorithms usually suffer in matching accuracy
due to image variations
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Motivation

*A compressed sensing theory reported recently seems to
be a good approach for improving feature description
performance.

= Unul now, no feature descriptor algorithm has used the
compressed sensing theory.

*'T'’he compressed sensing theory uses synthetic basis
functions to encode and decode a signal efficiently and
reduce the bandwidth and storage requirements.

= An algorithm that 1s suitable for hardware
implementation.
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SYBA Algorithm

= Compressed Sensing theory:
— Can accurately reconstruct a signal using minimal
sampling
— Sampling can be dictated by synthetic basis
functions

= SYBA: apply Synthetic Basis Images to
accurately describe an image region:

—M=C (K In %) number of SBI images needed to
accurately describe an image region
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Battleship Game — Adaptive Strategy
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Battleship Game - Synthetic Basis
Functions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

= Count number of ships
showing through the mask.

*T'otal number of ships (red
squar ) 1s 8

—Random Pattern A1 =>
7

—Random Pattern A2 =>
5
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—Random Pattern A3 =>
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Battleship Game - Synthetic Basis
Functions

M—C(Kz N)

where,
N represents the n n square area

K 1s the number of black squares where the battleships might
locate

M represents the maximum number of random patterns (guesses)
required to locate all ships when K 1s equal to the rounded up integer of

N/2.
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SYBA Algorithm Flow

Feature Detection —|we—- Feature List

«'

Binary FRI ’ Feature Region image

Average Intensity

SYBA Similarity Measure

Synthetic Basis Images (SBIs)|

Count similarity between synthetic image and feature region
image and save as descriptor element

Subregion -1 Subregion -2 Subregion -36
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SYBA Algorithm: Generating a Descriptor Value

5X5
FRI Region

S

30 x 30 FRI
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SYBA Algorithm: Feature Matching

= Use L1 norm comparison to compare descriptor
values
—d = Z =1,j=1 |xl yjl
= Descriptor similarity measure computation:

546664567..250000011

537664557..150010011
2(011000010..100010000) =5

= Between two features: similarity measure must
indicate features are mutually the best match
for a feature match to be made
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SYBA Algorithm

= Benefits of SYBA:

— Compressed description
— Simple operations
— Accurate Feature matches

= Limitations of SYBA:

— Feature match count and accuracy suffers under

large image variations specifically for:
* scale
* orientation
* perspective
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rSYBA Algorithm

= Goal: make the SYBA algorithm invariant
to scale and rotation image variation
— Generate binarized image regions that
are normalized to image scaling and
rotation
— Maintain benefits of SYBA
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rSYBA Algorithm Flow

rISYBA

Feature Detection || | Generate Scale FRI ‘ Normalize FRI Rotation
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Binary FRI Feature Region image

Average Intensity

SYBA Similarity Measure

Synthetic Basis Images (SBIS)|

Count similarity between synthetic image and feature region
image and save as descriptor element
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rSYBA Algorithm: Scale Invariance

= Generate multiple FRI's for the same feature at
different scales

FRI Image 2

FRI Image 1 S cain 08
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rSYBA Algorithm: Rotation Invariance

= Calculate the dominant gradient of the image

region and rotate it
— follow similar methodology to SIFT by using a
gradient histogram
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Datasets

*Oxford Affine Image Dataset
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Metrics

=Correct feature matches were determined using
the Homography matrix:

* p2=H=x*p,q

The Total Number of Correct Feature Matches
The Total Number of Matches Found

= precision =

The Total Number of Correct Feature Matches
The Total Number of Possible Matches

= recall =
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BYU Scale Dataset

Precision vs. Number of Correct Matches Number of Correct Matches vs. Scale Factor
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BYU Rotation Dataset

Precision vs. Number of Correct Matches o
Number of Correct Matches vs. Angle Variation
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Oxford Affine Dataset

Precision vs. Number of Correct Matches
Number of Correct Matches vs. Image Variance
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