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* Findinga low-rankapproximation to a partially | * QOur structurally-constrained gradientdescentis compared with HapCUT,
observed matrix is a frequently encountered problem palrec-end reacs HapCompass, Belief Propagation and several other state-of-the-art
4 y b (chromosome 1) chromosome 1 . .
The bi-linearity of the objective function renders the - reads haplotype assembly methods on both synthetic and experimental data.
problem non-convex and computationally challenging _— * The accuracy is measured by the reconstruction rate, the minimum error
Our focus: the problem of haplotype assembly, i.e., Chromosome 1 — G—C — A —T —A correction (MEC) score and the switch errorrate (SWER).
reconstructing single individual haplotypes from high- Chromosome¢2 — C—A —C—G—T : . 1
throughput segquer?cing data plotyp 5 ] T > C - * Synthetic data: the data sets emulating haplotype assembly of diploids
We formulate haplotype assembly as a structured low- vaired-end reads 1  }-—--——> - - | chromosome 2 TABLE I: Reconstruction rates for several haplotype assembly algorithms on diploid data
rank matrix factorization problem (chromosome 2) [_} I G reads Data orror oo,
P
_ _ o _ _ _ Coverage SCGD SPH FAST 2d BP
Contributions: an efficient algorithm, analysis of its ] [ }--->---G- A_ rate Cut
convergence, and experimental Verification 0.1 8 0.9957 0.9843 0.9852 0.9641 0.9641 0.8722
Fig. 1: The reads sample chromosomes/haplotypes but their origin (the chromosome 0.1 10 0.9978 0.9836 | 0.9948 | 0.9781 | 0.9781 | 0.8727
from which they originate) is unknown and needs to be inferred. 0.2 8 0.8802 0.8247 | 0.8529 | 0.7912 | 0.8616 | 0.8607
0.2 10 0.9482 0.8555 | 0.8774 | 0.8169 | 0.8672 | 0.8672
- 0.3 8 0.6656 0.6294 | 0.6259 | 0.6230 | 0.6206 | 0.5715
Mathematl Cal MOdel 0.3 10 0.6967 0.6381 | 0.6437 | 0.6340 | 0.6641 | 0.5956

 The set of n readsbearing information relevant for Structurally-COnstrained Gradient Descent

haplotype assembly are organized into an n x m SNP .
fragment matrix R, where m is the haplotype length.  We phrase haplotype assembly as the problem of low-rank matrix factorization M =
UVT of an unobservable matrix M from its noisy sample with missing entries, R.

Real data: 1000 Genomes Project, an international study meant to provide a
detailed map of human genetic variation.

TABLE II: The MEC scores and runtimes for the structurally
constrained gradient descent, HapCompass and belief prop-
agation when applied to the experimental data generated by
the 1000 Genomes Project.

* In humans (and other diploids), SNP sites are bi-allelic,
i.e. only two out of four possible nucleotides A, C, Gor T .
are possible at any position.

This can be expressed as minimization of the objective function

f(U,V) = ||Po(R—-UV")|%,

* Bases in SNP positions are labeled by binary symbols _ _
where ||||r denotes the Frobenius norm of its argument.

{1;-1}, where the mapping between letters and binary . . .
symbols follows arbitrary convention. Entries in r; that * Imposing the special structure of matrix U, i.e., the rows of U are standard unit chr | SCGD (Alg. 2) HapCompass BP.
do not provide any SNP information are labeled by 0. vectors, we perform iterations 1 M;;:)g tl;,ngg'S) NLF;S t9121668(87) Nfég tl;nge(zs)
* Introducea projector operator Po (1) definedas Vi1 = Vi —aVf(Vy) 2 | 1763 | 484 | 1938 | 109710 | 1921 | 28.7
Po(M) — { 1\1% : ;ft r(lzer {V)l See QQ’ U,y = arg mé% F(U.Viiy) 3 5_434 4.27 ;_627 8878.1 3.615 29.0
where () denotes the set of indices (i, j) such that R;; # 0. _ _ z _ A :‘663 6.74 :‘863 9859.5 :‘849 31.4
Matrix R be thought of as be Hained b where the gradientof f(U, V) with respectto Vis computed as 5 1330 4.37 1505 | 8623.8 | 1488 26.2
* Matrix R can be thought
R can ght ofas belng obtained by B - 6 | 2326 | 1921 | 2771 | 89692 | 2719 | 275
sampling, with errors,alow-rank n x m unobservable Vf(V)==2(Po(R-UV"))"U. T T 1260 T 5.60 493 1 80762 | 1417 | 224
matrix M M = UVT * The optimization over V is done by conventional gradientdescent. The optimization 8 | 1177 4.01 1261 | 86137 | 1255 736
- ' over U is done by exhaustively searching over k vectors in ¢ ={eq, e,, ..., e,} = {(1, 0 805 797 1007 | 6145.0 | 1004 172
* HereUandVaren x kand m x k matrices, respectively,

o..,0)(,1,..,0),..(0,0,.., 1)} to find the most likely U, ;.

» After the termination criterion is met, entries of the most recentiteration V., are
quantized to generate an estimate of the haplotype matrix V.

and k denotes the ploidy (the number of haplotypes).

* The i"row of U, u, is the indicator of the origin of the it
read. The rows of U are the k-dimensional standard unit
vectors consisting of all 0’s except for one entry which
is equal to 1.

Conclusions

We proposed the structurally-constrained gradientdescent algorithm for
factorizing partially observed low-rank matrices.

 Theorem: Let the step size a be selected as

IV
| Po(UV (V) D)%

8}
The algorithm imposes special structure of the matrices in the sought after

decomposition.

 DNA sequencingis erroneousand P, (M) # P, (R) . We

assume the model where the entries in R are perturbed where C € (0, 1) is a constant. Then the solution (U*, V*) found by the structurally
versions of the corresponding entriesin M, i.e., the (i, )

constrained gradientsearch algorithm is a stationary point of the objective function.
entry in R, R, is obtained as Moreover, if a fresh setI' of uniformly distributed test samples is available, then
executing one iteration of the algorithm from (U*, V*) will reveal whether or not
f(U*, V*) is a global minimum.

We analyzed the convergence of the proposed algorithm and provided
fundamental convergence guarantees.

R.. — I\[z] w.p. 1—p,
ke —A“[r,;j, W.Pp. P,

where p denotes the sequencing/genotyping error rate

We applied the algorithm to the problem of haplotype assembly, testing it
on both synthetic and experimental data. The results demonstrate superior
performance in terms of both accuracy and speed over competing schemes.




