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Introduction

• Spectrum sensing scenario:

f

t

I Observations x[n] from L antennas
I Test whether or not a primary user is transmitting
I Digital communication signals are cyclostationary (CS)

E
[
x[n]xH[n − k ]

]
=M1[n, k ] =M1[n + P, k ]

I Noise is modeled as wide-sense stationary (WSS)

E
[
x[n]xH[n − k ]

]
=M0[k ]

• Existing test: CS vs. WSS [1]

• Contribution: Tests for more specific noise models:
I temporally colored and spatially uncorrelated

II temporally white and spatially correlated
III temporally white and spatially uncorrelated

Problem formulation

• Cycle period P is integer-valued and known
• NP samples of x[n] are collected in

y =
[
xT [0] . . . xT [NP − 1]

]T

• Assuming x[n] ∼ CN , the hypotheses are

H1 : y ∼ CN (0,R1)

H0 : y ∼ CN (0,R0)

• Relation M[n, k ]↔ R

R =




M[0, 0] . . .M[0,−NP + 1]

. . .
. . . . . .

M[NP − 1,NP − 1] . . . M[NP − 1, 0]


 .

• Test about the structure of the covariance matrix

R1 R0 (case I)

block-Toeplitz

R0 (case II) R0 (case III)

block-diagonal with repeating blocks

• The exact values of the matrices are unknown
I Composite hypothesis test: UMPIT, LMPIT, GLRT,. . .
I no closed-form ML estimates of block-Toeplitz matrices

Approximation

• Approximation (N →∞): block-Toeplitz ' block-circulant
• Linear transformation y 7→ z
• Asymptotically equivalent hypotheses

H1 : z ∼ CN (0,S1)

H0 : z ∼ CN (0,S0)

• Covariance matrices are block-diagonal
I closed-form ML estimates exist

S1 S0 (case I) S0 (case II) S0 (case III)

repeating blocks

ML estimates

• M ≥ LP i.i.d. realizations zi
• Sample covariance matrix Ŝ = 1

M

∑M
i=1 ziz

H
i

Ŝ

I diagB (Ŝ) returns the diagonal blocks of size B × B
I the kth diagonal block of Ŝ with size L× L is Ŝk

• Then the estimates are
I Ŝ1 = diagLP (Ŝ)
I case I: Ŝ0 = diag1 (Ŝ)

I case II: Ŝ0 = INP ⊗
[

1
NP

NP∑
k=1

Ŝk

]

I case III: Ŝ0 = INP ⊗
[

1
NP

NP∑
k=1

diag1 (Ŝk)

]

• Sample coherence matrix:

Ĉ = Ŝ−1/2
0 Ŝ1Ŝ

−1/2
0

Asymptotic GLRTs

det(Ĉ)
H0

≷
H1

η

Numerical results

• Observations are simulated as

H1 : x[n] = (H ∗ s)[n] +w[n]
H0 : x[n] = w[n],

• QPSK signal s[n] with symbol length P = 4
• N = 16, M = 20
• Rayleigh fading channel H[n] with exponential power delay profile
• Noise w[n]

I if temporally colored: white noise filtered through moving average filter

• Probability of missed detection (PMD) at a false alarm rate of 10−3

I solid lines: proposed GLRT
I dashed lines: GLRT from [1]
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• ROC curve for case III at an SNR of −8 dB
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