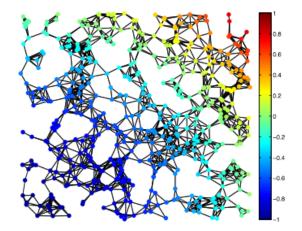
Learning Local Receptive Fields and their Weight Sharing Scheme on Graphs

Jean-Charles Vialatte, Vincent Gripon, Gilles Coppin

<□ → < □ → < Ξ → < Ξ → Ξ → ○ < ○ 1/21</p>

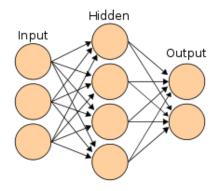
Nov. 14th 2017, IEEE Global SIP

Graph signal classification



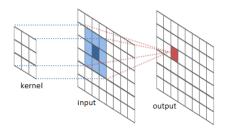
- a signal is taking values on vertices of a graph
- can we use a neural network to classify such signals?

Off the shelf: fully connected layers



- With only the vertices as input, fully connected layers can be used
- Fits most industrial use cases
- > Drawback: the edges carry important information but they are not used

Leveraging the underlying structure: convolutions



On images, convolutions make use of the underlying grid graph structure

- Iocality
- weight sharing
- neighbor matching

First approach: Spectral definition

Convolutions are defined as pointwise multiplications in the spectral domain

$$L = D - A = U\Lambda U^{T}$$
$$X \otimes W = U^{T}(UX.UW)$$

Examples:

- J. Bruna, et al, "Spectral networks and locally connected networks on graphs," arXiv preprint arXiv:1312.6203, 2013.
- M. Henaff, J. Bruna, and Y. LeCun, "Deep convolutional networks on graph-structured data," arXiv preprint arXiv:1506.05163, 2015.
- M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," NIPS, 2016.
- R. Levie, et al, "Cayleynets: Graph convolutional neural networks with complex rational spectral filters," arXiv preprint:1705.07664, 2017.

First approach: Spectral definition

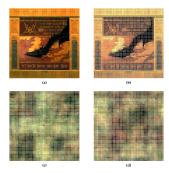
$$X \otimes W = U^T(UX.UW)$$

Pros

- Elegant and fast
- Work out of the shelf. Don't need to specify any weight sharing

Cons

Spectral convolutions on grids do not match regular convolutions



Second approach: Using the vertex domain

Convolutions with a kernel are defined as a function of neighboring vertices. Usually a dot product.

$$(X \otimes W)(v_i) = \sum_{j \in \mathcal{N}_{v_i}} w_{ij} X(v_j)$$

Examples:

- J-C. Vialatte, V. Gripon, and G. Mercier, "Generalizing the convolution operator to extend cnns to irregular domains," arXiv preprint arXiv:1606.01166, 2016.
- F. Monti, et al, "Geometric deep learning on graphs and manifolds using mixture model cnns," arXiv preprint:1611.08402, 2016.
- B. Pasdeloup, et al. "Convolutional neural networks on irregular domains through approximate translations on inferred graphs," arXiv preprint arXiv:1710.10035, 2017.

This is the approach used in the submitted paper

Second approach: Using the vertex domain

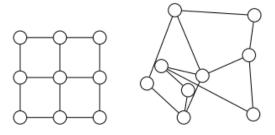
$$(X \otimes W)(v_i) = \sum_{j \in \mathcal{N}_{v_i}} w_{ij} X(v_j)$$

Pros

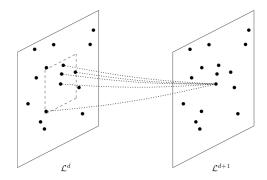
Vertex-domain convolutions on grids match regular convolutions

 Same results on images if the full underlying graph structure is known Cons

- ► w_{ij} ?
- How to define the weight sharing?



Local receptive fields / Local receptive graph



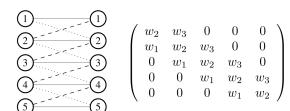
◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ♀ 9/21</p>

- graph of local receptive fields: local receptive graph
- the edges directly support the convolution

Usual case: learning one kernel

 $\mathbf{y} = f(W \cdot \mathbf{x} + \mathbf{b})$

	$\int w_{11}$	w_{12}	w_{13}	w_{14})
	w_{21}	w_{22}	w_{23}	w_{24}
3	w_{31}	w_{32}	w_{33}	w_{34}
3	w_{41}	w_{42}	w_{43}	w_{44}
4	v_{51}	w_{52}	w_{53}	w_{14})
(5)	•			,



Proposition: learning two kernels

$$\mathbf{y} = f(W \cdot S \cdot \mathbf{x} + \mathbf{b})$$

Learning W

- weight kernel
- W tensor of shape kernel_size x nb_input_channels x nb_feature_maps

Learning S

- weight sharing scheme kernel
- controls how the parameters of W will be shared across the graph
- S tensor of shape nb_input_vertices x nb_output_vertices x kernel_size

・ ・ (日) ・ (目) ・ (目) ・ (目) ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)
 ・ (1/21)

S is masked by the adjacency matrix of the graph

Graphical explanation

$$\mathbf{y} = f(W \cdot S \cdot \mathbf{x} + \mathbf{b})$$

$$(1 - 2 - 3 - 4 - 5)$$

$$(1 - 2 - 3 - 4 - 5)$$

$$(1 - 2 - 3 - 4 - 5)$$

$$(1 - 2 - 3 - 4 - 5)$$

$$(1 - 2 - 3 - 4 - 5)$$

$$(2 - 3 - 4 - 5)$$

$$(2 - 3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 - 4 - 5)$$

$$(3 -$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ペ 12/21

Genericity

Fully connected layer

kernel_size = nb_input_vertices x nb_output_vertices

◆□ → < □ → < Ξ → < Ξ → Ξ の Q ペ 13/21</p>

• S_{ij} are all possible one-hot bit encoded vectors

Convolutional

- $\blacktriangleright\ S$ one-hot bit encoded along third dimension
- $\blacktriangleright~S$ circulant along two first dimensions

Validation experiments on Image datasets

Restraining priors

- $1. \ \mbox{about edge matching for weight sharing}$
- 2. about any underlying graph structure

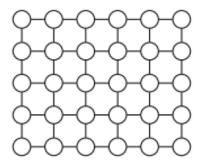
Full priors

3. widen a convolutional layer by also learning S

◆□ → < □ → < Ξ → < Ξ → Ξ の Q ペ 14/21</p>

Experiments on Mnist

- No prior about edge matching or any ordering of vertices
- Knowledge of the underlying grid structure



A: adjacency matrix

- ${\cal A}^k$: connections with up to $k\mbox{-hop}$ neighbors
- ${\boldsymbol{S}}$ is masked with powers of ${\boldsymbol{A}}$

Results

Conv5x5	A^1	A^2	A^3
(0.87%)	1.24% (1.21%)	1.02% (0.91%)	0.93% (0.91%)
A^4	A^5	A^6	A^{10}
0.90% (0.87%)	0.93% (0.80%)	1.00% (0.74%)	0.93% (0.84%)

Experiments on scramble Mnist

- No prior on underlying grid graph structure
- Usage of covariances between pixels

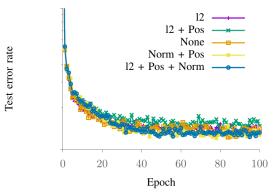
Results

- Tresholded: we keep 3% of edges with biggest covariance
- ▶ k-NN: for each pixel we keep k = 25 neighbors with biggest covariance

MLP	Conv5x5	Thresholded ($p = 3\%$)	k-NN ($k = 25$)	
1.44%	1.39%	1.06%	0.96%	

Forcing constraints?

- \blacktriangleright Norm: normalizes S along third dimension
- \blacktriangleright Pos: only positive weights for S



< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ペ 19/21

Shallow networks widen by learning S

Support	Learn S	None	Pos	Norm	Both
Conv5x5	No	/	/	/	86.8 ± 0.2
Conv5x5	Yes	87.4 ± 0.1	87.1 ± 0.2	87.1 ± 0.2	87.2 ± 0.3
$Grid^2$	Yes	87.3 ± 0.2	87.3 ± 0.1	87.5 ± 0.1	87.4 ± 0.1

Conclusion

- We propose to learn weights and how they are shared
- The layer formulation is simple and generic
- It uses a graph representation of local receptive fields
- It attains performances comparable with convolutional ones

Future work

- Graph inference for initializing S
- Reducing number of parameters (ex: sharing S between layers in deep networks)

・ ・ (日) ・ (目) ・ (目) ・ 目 の へ (P 21/21)

- Adding pooling
- Improving optimization
- Using S to define other operator-layers
- Semi-supervised and unsupervised