
A Fast Parallel Matrix Inversion

Algorithm Based on Heterogeneous

Multicore Architecture

Denggao Yu

School of Information Science and Engineering,

Southeast University, Nanjing, China

Email:{220130708}@seu.edu.cn

Joint work with Shiwen He, Yongming Huang, Guangshi Yu, Lvxi Yang

Content

 Introduction

 Parallel Algorithm for Matrix Inversion

 Implemented on Heterogeneous Multicore Architecture

 Simulation Results

 Conclusion

1/26 Southeast University

Introduction

Southeast University

Background

 Necessity to invert large matrix quickly and accurately.

 The Graphics Processor Unit (GPU) is able to provide a low-cost and flexible

multicore architecture for high performance computing.

Motivation

 We want to design a fast parallel algorithm for matrix inversion to utilize the

computational power of GPU.

2/26

Introduction

Southeast University

Existing Work

 [3] and [4] just present the triangular matrix inversion (TMI) on GPU, not the full

matrix.

 In [5] and [6], the Gaussian-Jordan and Gaussian elimination algorithms are

implemented on GPU.

Our Work

 We firstly designed a fast parallel algorithm for matrix inversion based on Modified

Squared Givens Rotations.

 This algorithm was implemented on CUDA to utilize the computational power of

GPU.

3/26

Parallel Algorithm for Matrix Inversion

Southeast University

It is well known that, inversion of matrix A can be performed by firstly decomposing matrix

A into an upper triangular matrix R and a unitary matrix Q via using QR decomposition

(QRD) [7], namely, A=QR. And it has been proved that the QRD could be equivalently

written as equation (1), then the inversion of matrix A could be calculated as . 
1

1 1 1

A U


  A U Q D

1

A U


A = Q D U (1)

￭ Relation to the original QRD

A RQ QD

 R diagD R

2

U R
D = D

U is an upper triangular matrix

4/26

function returns the main diagonal of matrix R. diag R

Parallel Algorithm for Matrix Inversion

Southeast University

Step 1: Calculate the upper triangular matrix U

1 2

1 2

k p

k p

a a a a

b b b b

  
   
    

a

b

Considering two complex vectors as

(2)

Assume that , the traditional Givens Rotations could be done to

eliminate bk in vector b as

0, 0k ka b 

 

 

 

1 2

1

1

k k k k

k k

k k

c a a b b

c a b

c b a

 

  



  



 


  


a a b

b a b

(3)

where and are the updated vectors of a and b.a b

5/26

Parallel Algorithm for Matrix Inversion

Southeast University

(4)

(5)

To remove the square root operations and divisions involved in equation (3), we firstly

translate vectors a and b to u and v space respectively.

ka 




u a

v b

Then the Givens Rotations equation (3) could be written as

k

k

k

v

v

u

  



 


u u v

v v u

Then through this transformation, only real division operations are included during the

Givens Rotations phase.

6/26

Parallel Algorithm for Matrix Inversion

Southeast University

 Situations when

0kwhen u
 


  

u v

v u
(6)

7/26

0ku 

Parallel Algorithm for Matrix Inversion

Southeast University8/26

Parallel Algorithm for Matrix Inversion

Southeast University

Step 2: Calculate the Inversion Matrix of U

The inversion of the triangular matrix U can be easily achieved via the back substitution

method [7], i.e.,

11

1

0

j

ik kj

k ijj

ij

jj

i j

i j

i j





  
   

 


 

 



G U
U

G
U

(7)

.-1
G = UHere

.

9/26

Parallel Algorithm for Matrix Inversion

Southeast University

Step 3: Compute the Inversion Matrix of A

 Recalling equation (1): , rewrite it as . Then

we could treat as a factor . Matrix U could be produced from A via left

multiplied by .

1

A U

 A = Q D U XU    
1 11

A U

  U Q D A X A

 
1

X 


 Then could be obtained when identity matrix I is left multiplied by ,

namely, , which means identity matrix I could be rotated in the similar

way as matrix A, as described in Step 1. After is achieved, the matrix inversion

could be done as .

 
1

X 
   

1 1 
X X I

 
1

1 1 1 1 1

A U


     A U Q D U X

10/26

 
1

X

Implemented on Heterogeneous

Multicore Architecture

Southeast University

Heterogeneous multicore architecture

 A host which is usually a CPU that is

used for controlling and processing the

serial parts of the algorithm.

 A GPU including a large number of

small cores focus on the execution of

the parallel parts.

 CUDA is a new hardware and software

architecture for parallel computing on.

11/26

Serial

Part

Kernel 1

Serial

Part

Kernel 2

Block

(0,0)

Block

(0,N)

Block

(N,0)

Block

(N,N)

Block

(0,0)

Block

(0,N)

Block

(N,0)

Block

(N,N)

Thread

(0,0)

Thread

(1,0)
Thread

(0,1)

Thread

(1,1)

Thread

(0,2)

Thread

(1,2)

Thread

(N,0)
Thread

(N,1)

Thread

(N,N)

Block(i,j)

CPU GPU

Grid 1

Grid 2

……

……

…
…

…
…

…
…

(host) (device)

Fig. 2: Heterogeneous Multicore Architecture

Implemented on Heterogeneous

Multicore Architecture

Southeast University

Firstly, we create an extension matrix B=[A | I], matrix A is the original matrix, matrix I is

an identity matrix the same dimension as A. Then copy matrix B from host to device to

initialize CUDA.

12/26

Step 1: Call Kernel 1 to obtain upper triangular matrix U and

 The Kernel 1 runs on GPU as shown in Fig. 2, which is called by the host. To realize

this part in parallel, we aim to create a thread for each element of matrix B. Hence we

launch 2n threads for each computation of . The parallel execution models

based on equation (5) is indicated in Fig. 3 and Fig. 4.

 When using equation (6), the parallel models are similar, which is much simpler actually.

andu v

Implemented on Heterogeneous

Multicore Architecture

Southeast University13/26

k

k

*

Thread 1

Thread k

Thread n

Thread n+1

Thread n+i

Thread 2n

u:

v:

…… …… …… ……

…… …… …… ……

…
…

…
…

element of matrix A element of matrix I

Fig. 3: Parallel execution model while computing u

Implemented on Heterogeneous

Multicore Architecture

Southeast University14/26

Fig. 4: Parallel execution model while computing v

k

k

u:

v:

…… …… …… ……

…… …… …… ……

…
…

…
…

element of matrix A element of matrix I

Thread 2n

-1
-1 -1 -1 -1

shift operation

Thread 1

Thread k

Thread n

Thread n+1

Thread n+i

-1

Implemented on Heterogeneous

Multicore Architecture

Southeast University

 Since the interdependencies between the data preclude the inversion of matrix U from

being executed in parallel. We compute on host based on the back substitution method

as described in equation (7).

15/26

Step 2: Compute on host

1
U

Implemented on Heterogeneous

Multicore Architecture

Southeast University16/26

Fig. 5: Parallel execution model for matrix multiplication

Step 3: Call Kernel 2 to compute matrix multiplication

E

F

n

n

E*F
(i,j)

…… E[i][n-1]E[i][0] E[i][1]

…… F[n-1][j]F[0][j] F[1][j]

……

……

……
…… ……

 Matrix multiplication is very

suitable for parallelization.

For simplicity, we use matrix

E and matrix F denote

 
1

1 1

A Uand


 
U Q D respectively.

The parallel execution model

of matrix multiplication is

shown in Fig. 5.

Simulation Results

Southeast University

Our platform consists of an Intel Core i5-3470 four-core CPU and a NVIDIA Geforce GT620

GPU. The concrete parameters of device is shown in TABLE I.

17/26

CPU GPU

Platform Intel Core i5-3470 NVIDIA Geforce GT620

Number of Cores 4

(only single core was used)

32

Clock Rate 3.2 GHz 1.62GHz

Memory 4GB DDR2 RAM 2G DDR3 memory

System bits 64bits

TABLE I Device Parameters

Simulation Results

Southeast University

 The x axis denotes the matrix size

from 100×100 to 500 ×500

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on

CUDA

18/26

Fig. 6: Execution times in milliseconds of the algorithm implemented on CUDA

100 200 300 400 500
0

10

20

30

40

50

60

70

80

Matrix size

T
im

e
(m

s
)

Implemented on GPU/CPU

Simulation Results

Southeast University

 The x axis denotes the matrix size

from 600×600 to 1000 ×1000

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on

CUDA

19/26

Fig. 7: Execution times in milliseconds of the algorithm implemented on CUDA

600 700 800 900 1000
0

100

200

300

400

500

600

700

800

Matrix size

T
im

e
(m

s
)

Implemented on GPU/CPU

Simulation Results

Southeast University

 The x axis denotes the matrix size

from 100×100 to 500 ×500

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on CPU-

only

20/26

Fig. 8: Execution times in milliseconds of the algorithm implemented on CPU-only

100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

Matrix size

T
im

e
(m

s
)

Implemented on CPU-only

600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

Matrix size

T
im

e
(m

s
)

Implemented on CPU-only

Simulation Results

Southeast University

 The x axis denotes the matrix size

from 600×600 to 1000 ×1000

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on CPU-

only

21/26

Fig. 9: Execution times in milliseconds of the algorithm implemented on CPU-only

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Matrix size

S
p
e
e
d
-u

p
 r

a
ti
o
 a

n
d
 T

h
ro

u
g
h
p
u
t

Speed-up ratio

Thoughput (gigaflops/s)

Simulation Results

Southeast University

 The throughput could be more

than 11 gigaflops/s when matrix

dimension is larger than

500×500, and run at up to 12.14

gigaflops/s for some

configurations.

 The speedup ratio could be 20x

for matrix larger than 500×500,

and up to around 32.62x for

some configurations in our

implementation

22/26

Fig. 10: Speed-up ratio and throughput of the algorithm implemented on CUDA

Conclusion

Southeast University

• A fast parallel matrix inversion algorithm was designed and implemented on the

heterogeneous multicore architecture.

• Parallel execution models were designed called by Kernel1 and Kernel2.

23/26

•The throughput could be more than 11 gigaflops/s when matrix dimension is larger

than 500×500, and run at up to 12.14 gigaflops/s for some configurations.

•The speedup ratio could be 20x for matrix larger than 500×500, and up to around

32.62x for some configurations in our implementation.

Reference

Southeast University24/26

[1] Sanders, Jason, and Edward Kandrot. CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[2] Zhang Shu, and Chu Yanli. High performance computing of GPU by CUDA , China

Pub. DynoMedia Inc., 2009.

[3] Ries, Florian, et al. “Triangular matrix inversion on graphics processing unit.” High

Performance Computing Networking, Storage and Analysis, Proceedings of the

Conference on. IEEE, 2009.

[4] Guerrieri, R., Tommaso De Marco, and F. Ries. “Triangular matrix inversion on

heterogeneous multicore systems.” IEEE Transactions on Parallel & Distributed

Systems 1 (2012): 177-184.

[5] Sharma, Girish, Abhishek Agarwala, and Baidurya Bhattacharya. “A fast parallel

Gauss Jordan algorithm for matrix inversion using CUDA.” Computers & Structures

128 (2013): 31-37.

Reference

Southeast University25/26

[6] Ezzatti, Pablo, Enrique S. Quintana-Orti, and Alfredo Remon. “High performance

matrix inversion on a multi-core platform with several GPUs.” Parallel, Distributed and

Network-Based Processing (PDP), 2011 19th Euromicro International Conference on.

IEEE, 2011.

[7] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU Press,

2012.

Southeast University

The End
Thanks for your attention!

26/26

