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Background

 Necessity to invert large matrix quickly and accurately.

 The Graphics Processor Unit (GPU) is able to provide a low-cost and flexible

multicore architecture for high performance computing.

Motivation

 We want to design a fast parallel algorithm for matrix inversion to utilize the

computational power of GPU.
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Existing Work

 [3] and [4] just present the triangular matrix inversion (TMI) on GPU, not the full

matrix.

 In [5] and [6], the Gaussian-Jordan and Gaussian elimination algorithms are

implemented on GPU.

Our Work

 We firstly designed a fast parallel algorithm for matrix inversion based on Modified

Squared Givens Rotations.

 This algorithm was implemented on CUDA to utilize the computational power of

GPU.
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It is well known that, inversion of matrix A can be performed by firstly decomposing matrix

A into an upper triangular matrix R and a unitary matrix Q via using QR decomposition

(QRD) [7], namely, A=QR. And it has been proved that the QRD could be equivalently

written as equation (1), then the inversion of matrix A could be calculated as . 
1

1 1 1

A U


  A U Q D

1

A U


A = Q D U (1)

￭ Relation to the original QRD

A RQ QD

 R diagD R

2

U R
D = D

U is an upper triangular matrix

4/26

function returns the main diagonal of matrix R. diag R
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Step 1: Calculate the upper triangular matrix U
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Considering two complex vectors as

(2)

Assume that                        , the traditional Givens Rotations could be done to 

eliminate bk in vector b as

0, 0k ka b 
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(3)

where      and      are the updated vectors of a and b.a b
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(4)

(5)

To remove the square root operations and divisions involved in equation (3), we firstly

translate vectors a and b to u and v space respectively.

ka 




u a

v b

Then the Givens Rotations equation (3)  could be written as 

k

k

k

v

v

u

  



 


u u v

v v u

Then through this transformation, only real division operations are included during the

Givens Rotations phase.
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 Situations when

0kwhen u
 


  

u v

v u
(6)
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Step 2: Calculate the Inversion Matrix of U

The inversion of the triangular matrix U can be easily achieved via the back substitution

method [7], i.e.,

11

1
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j

ik kj

k ijj

ij

jj

i j

i j

i j
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

  
   

 


 

 



G U
U

G
U

(7)

.-1
G = UHere

.
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Step 3: Compute the Inversion Matrix of A

 Recalling equation (1): , rewrite it as . Then

we could treat as a factor . Matrix U could be produced from A via left

multiplied by .

1

A U

 A = Q D U XU    
1 11

A U

  U Q D A X A

 
1

X 


 Then could be obtained when identity matrix I is left multiplied by ,

namely, , which means identity matrix I could be rotated in the similar

way as matrix A, as described in Step 1. After is achieved, the matrix inversion

could be done as .

 
1

X 
   

1 1 
X X I

 
1

1 1 1 1 1

A U


     A U Q D U X
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Heterogeneous multicore architecture

 A host which is usually a CPU that is

used for controlling and processing the

serial parts of the algorithm.

 A GPU including a large number of

small cores focus on the execution of

the parallel parts.

 CUDA is a new hardware and software

architecture for parallel computing on.
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Fig. 2: Heterogeneous Multicore Architecture
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Firstly, we create an extension matrix B=[A | I], matrix A is the original matrix, matrix I is

an identity matrix the same dimension as A. Then copy matrix B from host to device to

initialize CUDA.
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Step 1: Call Kernel 1 to obtain upper triangular matrix U and 

 The Kernel 1 runs on GPU as shown in Fig. 2, which is called by the host. To realize

this part in parallel, we aim to create a thread for each element of matrix B. Hence we

launch 2n threads for each computation of . The parallel execution models

based on equation (5) is indicated in Fig. 3 and Fig. 4.

 When using equation (6), the parallel models are similar, which is much simpler actually.

andu v
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Fig. 3: Parallel execution model while computing u
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Fig. 4: Parallel execution model while computing v

k

k

u:

v:

…… …… …… ……

…… …… …… ……

…
…

…
…

element of matrix A element of matrix I

Thread 2n

-1
-1 -1 -1 -1

shift operation

Thread 1

Thread k

Thread n

Thread n+1

Thread n+i

-1



Implemented on Heterogeneous 

Multicore Architecture

Southeast University

 Since the interdependencies between the data preclude the inversion of matrix U from

being executed in parallel. We compute on host based on the back substitution method

as described in equation (7).
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Step 2: Compute          on host
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Fig. 5: Parallel execution model for matrix multiplication

Step 3: Call Kernel 2 to compute matrix multiplication

E

F

n

n

E*F
(i,j)

…… E[i][n-1]E[i][0] E[i][1]

…… F[n-1][j]F[0][j] F[1][j]

……

……

……
…… ……

 Matrix multiplication is very

suitable for parallelization.

For simplicity, we use matrix

E and matrix F denote

 
1

1 1

A Uand


 
U Q D respectively.

The parallel execution model

of matrix multiplication is

shown in Fig. 5.
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Our platform consists of an Intel Core i5-3470 four-core CPU and a NVIDIA Geforce GT620

GPU. The concrete parameters of device is shown in TABLE I.
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CPU GPU

Platform Intel Core i5-3470 NVIDIA Geforce GT620

Number of Cores 4 

(only single core was used)

32

Clock Rate 3.2 GHz 1.62GHz

Memory 4GB DDR2 RAM 2G DDR3 memory

System bits 64bits

TABLE I Device Parameters
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 The x axis denotes the matrix size

from 100×100 to 500 ×500

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on

CUDA
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Fig. 6: Execution times in milliseconds of the algorithm implemented on CUDA
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 The x axis denotes the matrix size

from 600×600 to 1000 ×1000

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on

CUDA
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Fig. 7: Execution times in milliseconds of the algorithm implemented on CUDA
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 The x axis denotes the matrix size

from 100×100 to 500 ×500

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on CPU-

only
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Fig. 8: Execution times in milliseconds of the algorithm implemented on CPU-only
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 The x axis denotes the matrix size

from 600×600 to 1000 ×1000

 The y axis denotes the execution

time in milliseconds of the

algorithm implemented on CPU-

only
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Fig. 9: Execution times in milliseconds of the algorithm implemented on CPU-only
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 The throughput could be more

than 11 gigaflops/s when matrix

dimension is larger than

500×500, and run at up to 12.14

gigaflops/s for some

configurations.

 The speedup ratio could be 20x

for matrix larger than 500×500,

and up to around 32.62x for

some configurations in our

implementation
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Fig. 10: Speed-up ratio and throughput of the algorithm implemented on CUDA



Conclusion

Southeast University

• A fast parallel matrix inversion algorithm was designed and implemented on the 

heterogeneous multicore architecture.

• Parallel execution models were designed called by Kernel1 and Kernel2.
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•The throughput could be more than 11 gigaflops/s when matrix dimension is larger

than 500×500, and run at up to 12.14 gigaflops/s for some configurations.

•The speedup ratio could be 20x for matrix larger than 500×500, and up to around

32.62x for some configurations in our implementation.
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The     End
Thanks for your attention!
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