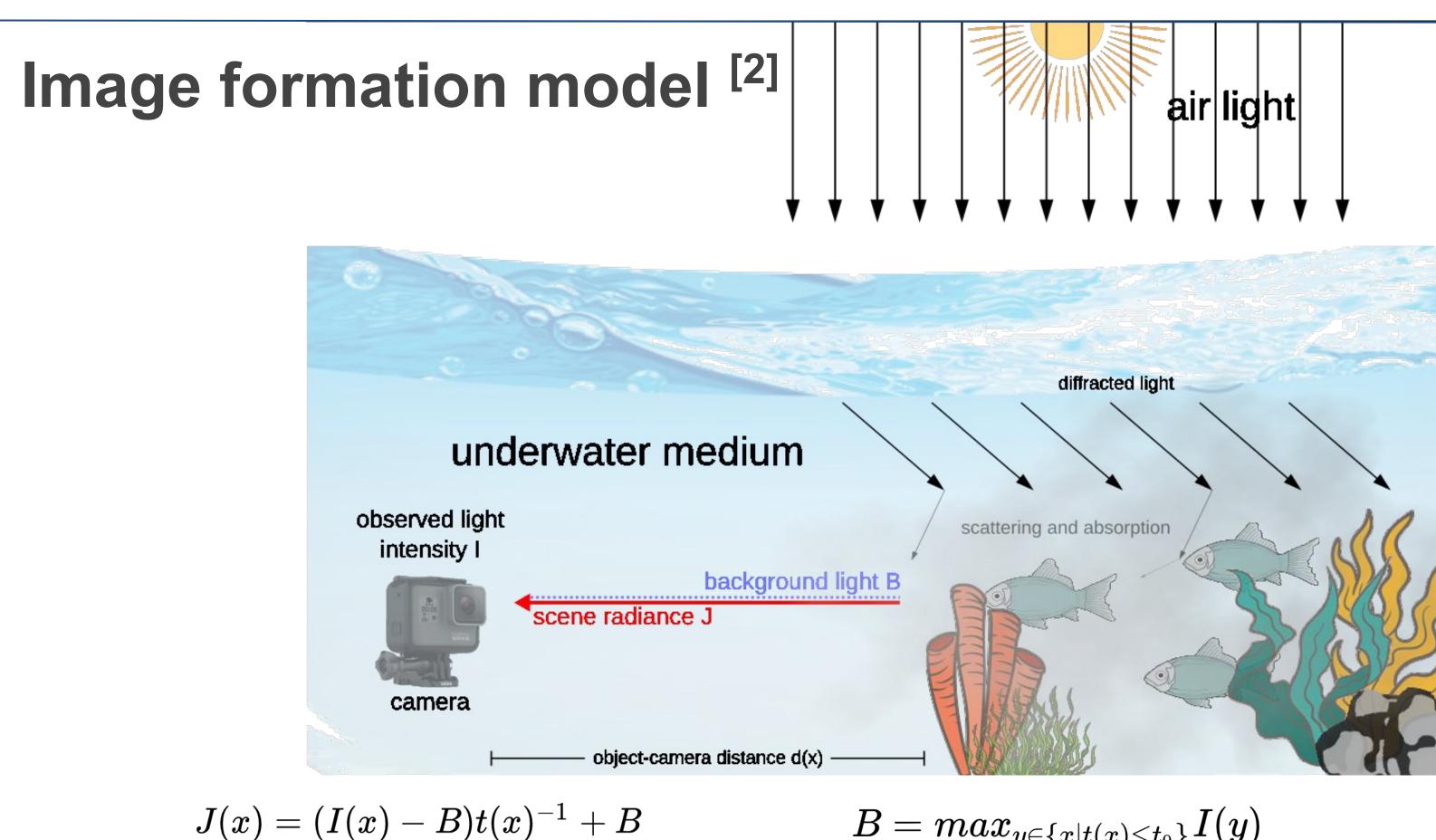


Sum-up

- Enhancement and restoration of images has overcome remarkable advances.
- Due to the complexity of the underwater environment and the lack of ground-truth data, images from this domain remain as a great challenge for the image processing community.
- We formulated a CNN-based approach that uses a set of image quality metrics to guide the restoration learning process.
- Considering the UCIQE metric [1], experiments show that our method improved the visual quality of underwater images.



Transmission map estimation

 \succ Supervised training is performed to adjust the selected network to our purpose. It consists in estimating the transmission map of underwater images, comparing such maps to their ground-truths. The transmission map is given by

$$t(x)=e^{-eta d(x)}$$
 .

 \succ The loss function used in this stage is the MSE [3], defined as $\mathcal{L}_t(I,J) = rac{1}{n} \sum_{x=1}^n (t_I(x) - t_j(x))^2$.

Visual-Quality-Driven Learning for Underwater Vision Enhancement

Walysson Barbosa

{wallyb, erickson}@dcc.ufmg.br, {henriquegrandinetti, thiagolagesrocha}@gmail.com Universidade Federal de Minas Gerais (UFMG), Brazil

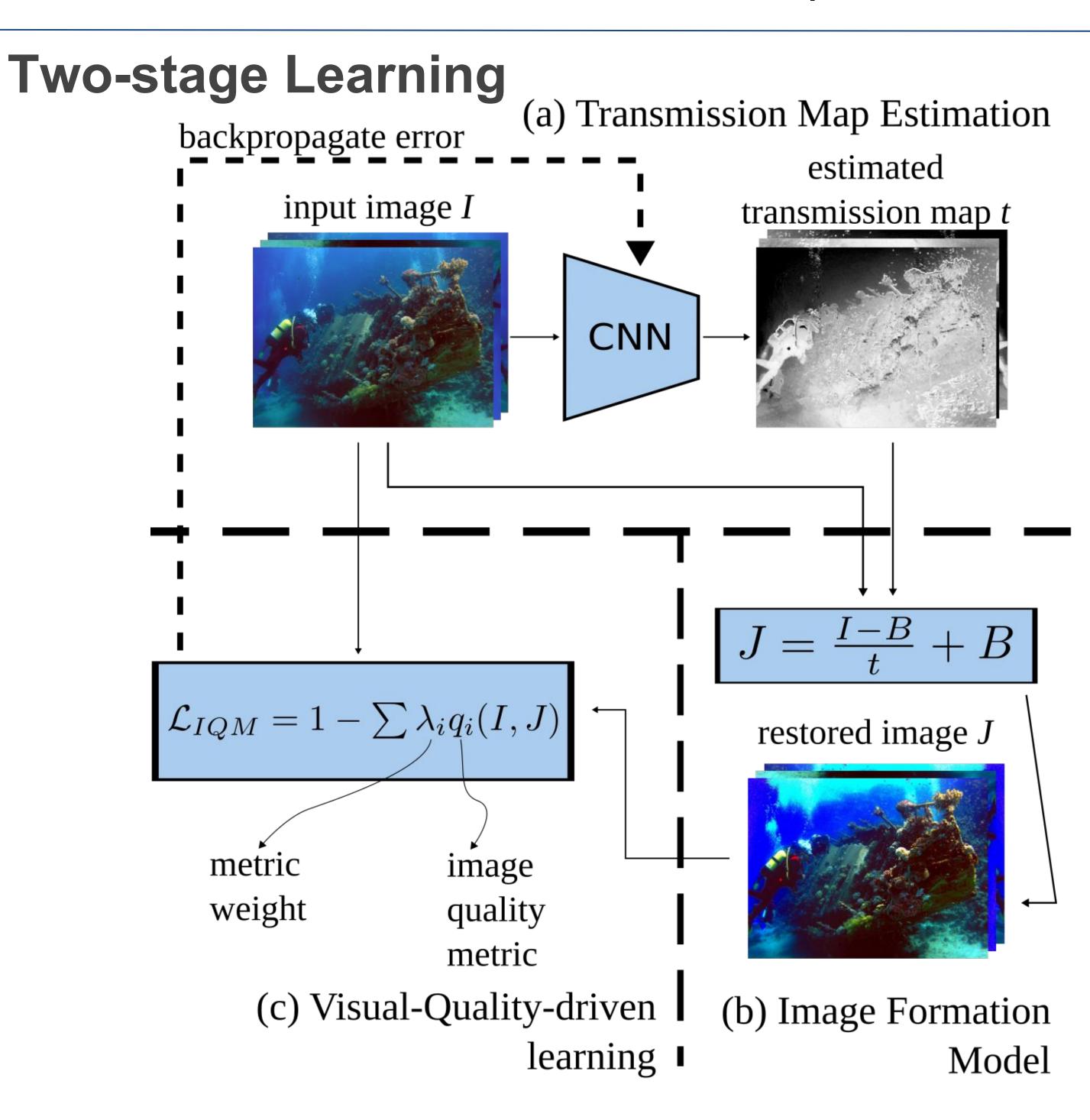
Visual-quality-driven learning

 \succ To overcome the absence of ground-truth data, we compute a set of Image Quality Metrics (chart below), which we define as $IQM(I,J) = \sum_{X \in \mathcal{X}} \lambda_X q_X(I,J),$

where λ_X is the weight for a feature gain q_X . \mathcal{X} yields a multi-objective function that measures the enhancement of four features in the restored image in comparison to the input image.

Contrast Level	$q_C(I,J) = rac{1}{n} \sum_{x=1}^n (C(J,x)^2 - C(I,x)^2)$
Accutance	$q_a(I,J) = rac{1}{n}\sum_{x=1}^n G(J,x) - rac{1}{n}\sum_{x=1}^n G(I,x)$
Border Integrity	$q_{BI} = rac{\sum_{x=1}^n (E(J,x) imes E_d(I,x))}{\sum_{x=1}^n E_d(I,x)}$
Gray World Prior	$q_G(J) = (I_{max} - I_{min}) - rac{2}{n} \sum_{x=1}^n (I(x) - 0.5(I_{min} + I_{max}))$

 \succ The subsequent IQM loss function is minimized after computing all previous metrics: $\mathcal{L}_{IQM} = 1 - IQM(I,J)$



 $B=max_{y\in\{x|t(x)\leq t_0\}}I(y)$

Henrique Amaral Thiago Rocha Erickson R. Nascimento

Metrics Evaluation

Scene	Original	He	Tarel	Drews	Ancuti	Ours
ancuti1	0.8366	1.8894	0.5132	2.7105	1.8259	0.5359
ancuti2	0.4490	1.2412	0.4546	0.9285	1.1200	0.5497
ancuti3	0.7487	0.9458	0.5766	1.0913	1.0264	4.0781
galdran	0.9045	4.7779	0.5776	1.4077	4.0371	6.9439

Visual Results

Original

References

[1] M. Yang and A. Sowmya. An underwater color image quality evaluation metric, IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6062–6071, 2015. [2] K. He, J. Sun, and X. Tang. Single image haze removal using dark channel prior, IEEE Trans. Patt. Anal. Mach. Intel., vol. 33, no. 12, pp. 2341–2353, 2011. [3] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. Dehazenet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5187–5198, 2016. [4] P. Drews, E. Nascimento, S. Botelho, and M. Campos. Underwater depth estimation and image restoration based on single images. IEEE Comp. Graph. App., vol. 36, no. 2, pp. 24–25, 2016. [5] J. Tarel, and N. Hautiere. Fast visibility restoration from a single color or gray level image. ICCV, 2009. [6] C. Ancuti, C. Ancuti, T. Haber, and P. Bekaert. Enhancing underwater images and videos by fusion. CVPR, 2012.

\succ Bold fonts indicate best results:

Table 1. Edg	es conservation	(larger is	better).
--------------	-----------------	------------	----------

Scene	He	Drews	Ancuti	Ours
ancuti1	0.0000	0.0000	0.0003	0.0855
ancuti2	0.0000	0.0000	0.0006	0.0192
ancuti3	0.0000	0.0000	0.0008	0.0009
galdran	0.0004	0.0011	0.0062	0.0280

tter).

 \succ Higher blurriness is present in results from other techniques, while ours tends to preserve the valid scene edges.

