Overview

* Most existing speaker diarization systems are based on unsupervised
clustering approaches, such as k-means or hierarchical clustering.

 We propose UIS-RNN, a trainable model for segmenting and clustering
temporal data by learning from examples.

* New state-of-the-art on CALLHOME, while decoding is online.
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Fig. Example application: Improve ASR with
diarization results.

Fig. Speaker diarization solves the
problem of “who spoke when”.

Baseline Diarization System
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Fig. Multi-layer LSTM network as speaker Fig. Baseline diarization system using d-vectors and

encoder. unsupervised clustering.

« Speaker encoder is trained with “Generalized End-to-End Loss for Speaker
Verification”, ICASSP 2018. Proven to be better than softmax or triplet loss.

« Speaker embeddings (d-vectors) are extracted on sliding windows of length
240ms with 50% overlap, using log-mel-filterbank energies as features.

* Window-wise d-vectors are aggregated on non-overlapping segments.
Segments are determined by VAD and a maximal length limit of 400ms.

A modified version of spectral clustering on segment-wise embeddings, using
eigen-gap for number of speakers, produces state-of-the-art performance.

* This baseline system is described in “Speaker Diarization with LSTM”,
ICASSP 2018. A lecture is available on {23 YouTube
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temporal information.

UIS-RNN

 We model the generative process of the speaker embedding sequence:
p(xta Yty <t |x[t—1] s Y[t—1] 5 z[t—l])

= p(xt‘x[t—l] ; y[t]) - p(ye| ¢, y[t—l]) ‘
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speaker assignment

{x;}. embedding sequence
{y:}. label sequence
{z,}. binary speaker changes

p(2t|zpt—17)
N\’

sequence generation speaker change

Speaker assignment

« Speaker labels are assigned using
Chlnese restaurant process (CRP

Sequence generation

« Each speaker is modeled by an RNN instance, all sharing same parameters.

« Each instance has its own states. States of different speakers interleave in
the time domain.

 Each embedding follows a Gaussian, where the mean is this speaker’s
average RNN output so far.

Speaker change
* |.I.D. coin flipping distribution:
P(Zt — O‘Z[t—l]r/l) = Po
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(CALLHOME), compared with other teams’ work.
VB for Variational Bayesian resegmentation.

Full lecture is available on 38 Youlube
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Experiment Results

« Datasets: NIST SRE 2000 Disk-8 (CALLHOME), Disk-6, and ICSI.
 UIS-RNN requires training, so we evaluated with three different setups: in-
domain training, off-domain training, and in-domain plus off-domain training.

In-domain 5-fold Disk 8
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evaluation

. - St ,
e _____Yan _______C eval
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Table. DER (%) on NIST SRE 2000 Disk-8 ~ Conclusions:

Supervised diarization is helpful, when
we have in-domain training data with

Method Training data DER (%)
k-means _ 12.3 timestamped speaker labels.
spectral - 8.8  What is learned by UIS-RNN: (1)
UIS-RNN 5-fold 8.5 . _ . .
IS-ANN T — Z)llalogue styles; (2) Domain-specific
UIS-RNN | 5-fold + Disk-6 + ICS| 7.6 nints for speaker turns.

Castaldo er a/ 13.7 * Future work: (1) Speaker change: coin

Sh tal : : :
i eta = flipping — RNN:; (2) Unlabeled data as
Senoussaoui er al. 12.1

part of training set; (3) Offline decoding
to further improve quality.

Garcia-Romero et al. (+VB) 12.8 (9.9)

More Information

Core algorithm on ) GitHub
https://github.com/google/uis-rnn

= L] google / uis-rnn A
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Fully Supervised Speaker Diarization

This is the library for the Unbounded Interleaved-State
Recurrent Neural Network (UIS-RNN) algorithm, corresponding
to the paper Fully Supervised Speaker Diarization. -
https://arxiv.org/abs/1810.04719

Authors: Aonan Zhang, Quan Wang, Zhenyao Zhu,

John Paisley, Chong Wang

speaker-diarization uis-rnn speaker-recognition

Presented by: Quan Wang

supervised-learning clustering
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