Speech artifact removal from EEG recordings of spoken word production with tensor decomposition

- 1) Nara Institute of Science and Technology, Japan
- 2) RIKEN, Center for Advanced Intelligence Project AIP, Japan
- 3) Department of Informatics, Bandung Institute of Technology, Indonesia Email: holy.lovenia@gmail.com
- **1. Introduction Electrode placement** A. Background Vertical EOG to monitor eye caused by muscle novements required to Lip EMG Which part of the signal nitor speech is a speech artifact? artifacts Unknown characteristics Difficult to remove Unable to process Speech artifact the EEG data contamination **Proposed method C. Research Objectives** (tensor-based) **Propose a new method** for removing speech artifacts with tensor decomposition for sources reconstruction 2. Evaluate the performance of the proposed method against existing methods (SAR-ICA and BSS-CCA) 2. Methods SAR-ICA (Porcaro et al, 2015) DIFFIT by Timmerman et Independent component analysis (ICA) al. 2000) Speech artifacts are caused by muscle Analysis movements required to produce speech Visual **Statistica** Spectral nspectior calculation calculation pographica (PSD (entropy, kurtosis, glot orrelation wi single-tria lip EMG) kurtosis) averaged trials) Manual artifact detection Evaluation **Control cycle** (to ensure only artifact is removed) (correlation with lip EMG) Clustering Clustering 1. Speech artifact cluster (SAR-ICA) 2. Cleaned data cluster (SAR-ICA) 3. Raw data without EOG cluster _____ Raw data without EOG cluster Speech artifact cluster (CPD) Eye artifact remova Performed with SAR-ICA, using PSD correlation with EOG Cleaned data cluster (CPD) channel as the spectral calculation BSS-CCA (Vos et al, 2010) Blind source separation (BSS) **PSD analysis** (using quantitative criterion) sing canonical correlation analysis (CC as ground truth It is an EMG activity if $M \ge \frac{E}{n}$ **PSD** analysis - M is average power in EMG band (approx. Aspect by 15-30 Hz) - E is average power in EEG band (approx. Artifact marking by 0.1-15 Hz) - n is constant (default: 7) Decomposition Assumption: **EEG** \rightarrow **lower power at high freq**, method Automatic muscle-related **EMG** \rightarrow higher power at high freq artifact removal **EMG** channels usage BSS-CCA decomposes EEG signals into sources Data reconstruction in decreasing order of autocorrelation **EMG** activity is **weakly autocorrelated** over Need of visual

Cleaned data cluster (BSS-CCA)

Brain activity is more autocorrelated

Holy Lovenia^{1,3}, Hiroki Tanaka^{1,2}, Sakriani Sakti^{1,2}, Ayu Purwarianti³, and Satoshi Nakamura^{1,2}

previous methods do it after

ecomposition

No

Yes

Yes

inspection

producing cleaned data (0.101)

- Use other means to determine th speech artifacts

	6. References	C. Porcaro, M. T. Medaglia, and A. Krott, "Removing speech artifacts from electroencephalographic recordings during overt picture naming," NeuroImage, vol. 105, pp. 171 – 180, 2015.	
	F. Cong, QH. Lin, LD. Kuang, XF. Gong, P. Astikainen, and T. Ristaniemi, "Tensor decomposition of eeg signals: A brief review," Journal of Neuroscience Methods, vol. 248, pp.		
al	59 – 69, 2015. [Online].	- 69, 2015. [Online].	
0	Huffel, and B. Burle, "Removal of muscle artifacts from EEG recordings of spoken language production," Neuroinformatics, vol. 8, pp. 135–150, 06 2010.		
or	M. E. Timmerman and H. A. L. Kiers, "Threemode principal components analysis: Choosing the numbers of components and sensitivity to local optima," British Journal of Mathematical and Statistical Psychology, vol. 53, no. 1, pp. 1–16, 2000.		
e	T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.		
	T. Nishimoto, K. Miyawaki, T. Ueda, Y. Une, and M. Takahashi, "Japanese normative set of 359 pictures." Behavior research methods, vol. 37 3, pp. 398–416, 2005.		