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1. Introduction

•Many engineering applications, such as attitude estimation,
image processing, robotics, lead to models whose states are
constrained to the Stiefel manifold Vk,l.
• This work extends [1] in two ways:

– The observations are nonlinear functions of the state.
– We approximate the optimal importance function.

2. Problem Setup

• Let Sn denote the state of a system on the Stiefel manifold Vk,l,
i.e., {V ∈ Rk×l : VTV = Il}, k > l, according to

Sn|Sn−1 ∼ vMF(Sn|κSn−1) =
etr
(
κSTn−1Sn

)
0F1

(
k
2 ,
κ2
4 Il

) ,

where κ ∈ R+ is a fixed hyperparameter and 0F1 is the
hypergeometric function with matrix argument.
• {Sn} gives rise to the observation sequence {Yn}, Yn ∈ Rk×l,

Yn|Sn ∼ Nk,l(Yn|G(Sn),Ω,Γ),

where G : Rk×l → Rk×l is a possibly nonlinear function, and
Nk,l is a matrix normal distribution on Rk×l.
• The particle filtering algorithm of [1] was restricted to G(Sn) =

Sn and used the prior importance function:

S
(q)
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(q)
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)
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(q)
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• The restriction on G can be trivially lifted, leading to the weight
update equation

w
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n ),Ω,Γ).

3. Proposed Method

•Optimal importance function:
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n ∼ p(Sn|Yn,S

(q)
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p(Yn|Sn)p(Sn|S
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.

(1)

• The integral in (1) cannot be analytically evaluated if G(Sn) is a
general nonlinear function. By linearizing G(Sn) around Sn−1,
we get

g(sn) ≈ g(sn−1) + J(sn−1) [sn − sn−1] , (2)

where sn , vec(Sn), g(sn) , vec(G(Sn)) and [J(sn−1)]kl ,
∂[g(s)]k
∂[s]l

∣∣∣
s=sn−1

is a Jacobian matrix.

• As a result of (2):

p(Sn|Yn,S
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• The weights are then exactly propagated as
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where FB stands for the matrix Fisher-Bingham p.d.f. on Vn,k:

FB(Sn|An,Bn) =
exp
{
tr(AT

nSn) + vec(Sn)TBnvec(Sn)
}

cFB(An,Bn)
,

where cFB(An,Bn) is the matrix Fisher-Bingham p.d.f.
normalization constant, and

An , vec−1(ỹTnΣ−1J(sn−1)) + κSn−1,

Bn , −1
2
J(sn−1)

TΣ−1J(sn−1),

ỹn , yn − g(sn−1) + J(sn−1)sn−1,

Σ , Γ⊗Ω.

4. Sampling from a matrix Fisher-Bingham p.d.f.

•We adapted from the algorithm in [2, Sec. 3.3], originally
developed for the matrix Bingham-Von Mises-Fisher p.d.f.
•Under the restriction that Bn is a block-diagonal matrix,

FB(Sn|An,Bn) ∝
l∏

m=1

exp
(
An[,m]TSn[,m] + Sn[,m]TBn(m)Sn[,m]

)
,

where [,m] stands for the m−th column of a matrix and B(m) ∈
Rk×k denotes the m−th block of the diagonal of Bn.
• As the columns of Sn are orthogonal with probability 1, Sn =
[Nz Sn[,−1]], where Sn[,−1] is the matrix formed by removing
the first column of Sn, N ∈ Rk×(k−l+1) is an orthonormal basis
for the null space of Sn[,−1], and z is a (k − l + 1) unit-norm
column vector.
• The conditional p.d.f. of z is then given by [2]

p(z|Sn[,−1]) ∝ exp
(
An[, 1]

TNz + zTNTBn(1)Nz
)

which is a Fisher-Bingham density on the unit sphere.
• A Markov chain with stationary p.d.f. FB(Sn|An,Bn) can be

obtained via the Gibbs sampler:

– Given S
<j>
n = S, the j−th element of the chain, compute

steps 1 to 4 for each m ∈ {1, . . . , l} in a random order:
1. compute N, an orthonormal basis for the null space of

S[,−m];
2. compute ã = An[,m]TN and B̃ = NTBn(m)N;
3. sample z from a Fisher-Bingham density on the unit sphere

with parameters ã and B̃.
4. set S[,m] = Nz.

– Set S
<j+1>
n = S.

5. Computation of the matrix Fisher-Bingham p.d.f.
normalization constant

• To update the weights (Equation 3), it is necessary to compute
the normalization constants

cFB(An,Bn) ,
∫
Vk,l

exp
{
tr(AT

nS) + vec(S)TBnvec(S)
}
dVk,l(S),

(4)
cMF (kSn−1) = cFB(kSn−1,0).

• As existing approaches did not perform adequately, we
introduced the Quasi Monte Carlo algorithm:

1. Generate low-discrepancy samples uniformly distributed on
Vk,l.

2. Approximate (4) as

Vol(Vk,l)
1

NS

NS∑
i=1

{
tr(AT

nX<i>) + vec(X<i>)TBnvec(X<i>)
}

where NS is the number of samples, X<i> is the i−th
generated sample, and Vol(Vk,l) is the volume of Vk,l.

6. Computation of the weighted averages on the Stiefel
manifold

• Ideally, one would estimate the state as a Karcher mean, i.e.,
the value of Ŝn that minimizes the weighted mean square
geodesic distance to the particle set.

• To reduce computational complexity, we evaluated the weighted
averages over the Stiefel manifold as

S<i+1>n =MS<i>n

 Q∑
q=1

w
(q)
n M−1S<i>n

(
S
(q)
n

) , i ≥ 0,

where S<i>n denotes the i−th estimate of the weighted average,
with S<0>n chosen as a random element of the particle set,
and M and M−1 are the orthographic retraction and lifting
maps [3].

7. Numerical Experiment

•We performed numerical simulations with 150 independent
trials of 100 synthetic data samples. Particle filters used 300
particles.
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Figure 1: Mean geodesic distance for the proposed algorithm and
that of [1] as a function of time, for distinct nonlinear observation
functions g(x).

•We assumed that G acts element-wise, so that the Jacobian
J(sn−1) is diagonal. The parameters were set to κ = 150,
Ω , Il, Γ , Ikσ

2, and Σ = Iklσ
2, with σ2 = 0.05, k = 3, l = 2.

• The algorithms’ performance was evaluated in terms of the
mean geodesic distance from the true state Sn to the estimated
state Ŝn, i.e., d(Sn, Ŝn) = ‖Exp−1Sn

(Ŝn)‖F .

• For stronger nonlinearity (top), the proposed method exhibited
an asymptotic error about 30% smaller than the method of [1]

8. Conclusions

• For certain choices of G, the proposed method outperforms
that of [1] at the expense of increased computational
complexity.
•Most of the computational complexity of the proposed

method is related to drawing samples from and computing
normalization constants for the matrix Fisher-Bingham density.
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