

### 1. Introduction

- Many engineering applications, such as attitude estimation, image processing, robotics, lead to models whose states are constrained to the Stiefel manifold  $\mathcal{V}_{k,l}$ .
- This work extends [1] in two ways:
- The observations are nonlinear functions of the state.
- We approximate the optimal importance function.

### 2. Problem Setup

• Let  $S_n$  denote the state of a system on the Stiefel manifold  $\mathcal{V}_{k,l}$ , i.e.,  $\{\mathbf{V} \in \mathbb{R}^{k \times l} : \mathbf{V}^T \mathbf{V} = \mathbf{I}_l\}, k > l$ , according to

$$\mathbf{S}_{n}|\mathbf{S}_{n-1} \sim \mathbf{v}\mathbf{MF}(\mathbf{S}_{n}|\kappa\mathbf{S}_{n-1}) = \frac{\operatorname{etr}\left(\kappa\mathbf{S}_{n-1}^{T}\mathbf{S}_{n}\right)}{{}_{0}F_{1}\left(\frac{k}{2},\frac{\kappa^{2}}{4}\mathbf{I}_{l}\right)},$$

where  $\kappa \in \mathbb{R}^+$  is a fixed hyperparameter and  $_0F_1$  is the hypergeometric function with matrix argument.

• {S<sub>n</sub>} gives rise to the observation sequence {Y<sub>n</sub>}, Y<sub>n</sub>  $\in \mathbb{R}^{k \times l}$ ,

$$\mathbf{Y}_n | \mathbf{S}_n \sim \mathbf{N}_{k,l}(\mathbf{Y}_n | \mathbf{G}(\mathbf{S}_n), \mathbf{\Omega}, \mathbf{\Gamma}),$$

where  $\mathbf{G} : \mathbb{R}^{k \times l} \to \mathbb{R}^{k \times l}$  is a possibly nonlinear function, and  $\mathbf{N}_{k | l}$  is a matrix normal distribution on  $\mathbb{R}^{k \times l}$ .

• The particle filtering algorithm of [1] was restricted to  $G(S_n) =$  $S_n$  and used the prior importance function:

$$\mathbf{S}_{n}^{(q)} \sim p\left(\mathbf{S}_{n} | \mathbf{S}_{n-1}^{(q)}, \mathbf{Y}_{n}\right) = \mathbf{v} \mathbf{M} \mathbf{F}(\mathbf{S}_{n} | \kappa \mathbf{S}_{n-1}^{(q)}).$$

• The restriction on G can be trivially lifted, leading to the weight update equation

$$w_n^{(q)} \propto w_{n-1}^{(q)} \mathbf{N}_{k,l}(\mathbf{Y}_n | \mathbf{G}(\mathbf{S}_n^{(q)}), \mathbf{\Omega}, \mathbf{\Gamma}).$$

### 3. Proposed Method

Optimal importance function:

$$\mathbf{S}_{n}^{(q)} \sim p(\mathbf{S}_{n} | \mathbf{Y}_{n}, \mathbf{S}_{n-1}^{(q)}) = \frac{p(\mathbf{Y}_{n} | \mathbf{S}_{n}) p(\mathbf{S}_{n} | \mathbf{S}_{n-1}^{(q)})}{\int_{\mathcal{V}_{k,l}} p(\mathbf{Y}_{n} | \mathbf{S}_{n}) p(\mathbf{S}_{n} | \mathbf{S}_{n-1}^{(q)}) d\mathcal{V}_{k,l}(\mathbf{S}_{n})}.$$
(1)

• The integral in (1) cannot be analytically evaluated if  $G(S_n)$  is a general nonlinear function. By linearizing  $G(S_n)$  around  $S_{n-1}$ , we get

$$\mathbf{g}(\mathbf{s}_n) \approx \mathbf{g}(\mathbf{s}_{n-1}) + \mathbf{J}(\mathbf{s}_{n-1}) \left[\mathbf{s}_n - \mathbf{s}_{n-1}\right], \quad (2)$$

where  $\mathbf{s}_n \triangleq \operatorname{vec}(\mathbf{S}_n)$ ,  $\mathbf{g}(\mathbf{s}_n) \triangleq \operatorname{vec}(\mathbf{G}(\mathbf{S}_n))$  and  $[\mathbf{J}(\mathbf{s}_{n-1})]_{kl} \triangleq$  $\left. \frac{\partial [\mathbf{g}(\mathbf{s})]_k}{\partial [\mathbf{s}]_l} \right|_{\mathbf{s}=\mathbf{s}_{n-1}}$ is a Jacobian matrix.

# **NONLINEAR STATE ESTIMATION USING PARTICLE FILTERS ON THE STIEFEL MANIFOLD**

## Claudio J. Bordin Jr., Universidade Federal do ABC, and Marcelo G. S. Bruno, Instituto Tecnológico de Aeronáutica.

• As a result of (2):

 $p(\mathbf{S}_n | \mathbf{Y}_n, \mathbf{S}_{n-1}^{(q)}) \approx \operatorname{FB}(\mathbf{S}_n | \mathbf{A}_n^{(q)}, \mathbf{B}_n^{(q)}),$ 

• The weights are then exactly propagated as

$$w_n^{(q)} \propto w_{n-1}^{(q)} \frac{\mathbf{v} \mathbf{MF}(\mathbf{S}_n^{(q)} | \kappa \mathbf{S}_{n-1}^{(q)}) \mathbf{N}_{k,l}(\mathbf{Y}_n | \mathbf{G}(\mathbf{S}_n^{(q)}), \mathbf{\Omega}, \mathbf{\Gamma})}{\mathbf{FB}(\mathbf{S}_n^{(q)} | \mathbf{A}_n^{(q)}, \mathbf{B}_n^{(q)})}.$$
 (3)

where FB stands for the matrix Fisher-Bingham p.d.f. on  $\mathcal{V}_{n,k}$ :

$$FB(\mathbf{S}_n | \mathbf{A}_n, \mathbf{B}_n) = \frac{\exp\left\{ \operatorname{tr}(\mathbf{A}_n^T \mathbf{S}_n) + \operatorname{vec}(\mathbf{S}_n)^T \mathbf{B}_n \operatorname{vec}(\mathbf{S}_n) \right\}}{c_{FB}(\mathbf{A}_n, \mathbf{B}_n)},$$

where  $c_{FB}(\mathbf{A}_n, \mathbf{B}_n)$  is the matrix Fisher-Bingham p.d.f. normalization constant, and

$$\mathbf{A}_{n} \triangleq \operatorname{vec}^{-1}(\tilde{\mathbf{y}}_{n}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{J}(\mathbf{s}_{n-1})) + \kappa \mathbf{S}_{n-1},$$
  
$$\mathbf{B}_{n} \triangleq -\frac{1}{2} \mathbf{J}(\mathbf{s}_{n-1})^{T} \boldsymbol{\Sigma}^{-1} \mathbf{J}(\mathbf{s}_{n-1}),$$
  
$$\tilde{\mathbf{y}}_{n} \triangleq \mathbf{y}_{n} - \mathbf{g}(\mathbf{s}_{n-1}) + \mathbf{J}(\mathbf{s}_{n-1})\mathbf{s}_{n-1},$$
  
$$\boldsymbol{\Sigma} \triangleq \boldsymbol{\Gamma} \otimes \boldsymbol{\Omega}.$$

### 4. Sampling from a matrix Fisher-Bingham p.d.f.

- We adapted from the algorithm in [2, Sec. 3.3], originally developed for the matrix Bingham-Von Mises-Fisher p.d.f.
- Under the restriction that  $\mathbf{B}_n$  is a block-diagonal matrix,

$$FB(\mathbf{S}_n|\mathbf{A}_n, \mathbf{B}_n) \propto \prod_{m=1}^{l} \exp\left(\mathbf{A}_n[, m]^T \mathbf{S}_n[, m] + \mathbf{S}_n[, m]^T \mathbf{B}_n(m) \mathbf{S}_n[, m]\right),$$

where [,m] stands for the m-th column of a matrix and  $\mathbf{B}(m) \in \mathbb{R}$  $\mathbb{R}^{k \times k}$  denotes the *m*-th block of the diagonal of  $\mathbf{B}_n$ .

- As the columns of  $S_n$  are orthogonal with probability 1,  $S_n = 1$  $[Nz \ S_n[,-1]]$ , where  $S_n[,-1]$  is the matrix formed by removing the first column of  $\mathbf{S}_n$ ,  $\mathbf{N} \in \mathbb{R}^{k \times (k-l+1)}$  is an orthonormal basis for the null space of  $S_n[,-1]$ , and z is a (k - l + 1) unit-norm column vector.
- The conditional p.d.f. of z is then given by [2]

$$p(\mathbf{z}|\mathbf{S}_n[,-1]) \propto \exp\left(\mathbf{A}_n[,1]^T\mathbf{N}\mathbf{z} + \mathbf{z}^T\mathbf{N}^T\mathbf{B}_n(1)\mathbf{N}\mathbf{z}\right)$$

which is a Fisher-Bingham density on the unit sphere.

- A Markov chain with stationary p.d.f.  $FB(\mathbf{S}_n | \mathbf{A}_n, \mathbf{B}_n)$  can be obtained via the Gibbs sampler:
- -Given  $S_n^{<j>} = S$ , the *j*-th element of the chain, compute steps 1 to 4 for each  $m \in \{1, \ldots, l\}$  in a random order:
- 1. compute N, an orthonormal basis for the null space of S[, -m];
- 2. compute  $\tilde{\mathbf{a}} = \mathbf{A}_n[,m]^T \mathbf{N}$  and  $\tilde{\mathbf{B}} = \mathbf{N}^T \mathbf{B}_n(m) \mathbf{N};$
- 3. sample z from a Fisher-Bingham density on the unit sphere with parameters  $\tilde{\mathbf{a}}$  and  $\tilde{\mathbf{B}}$ .  $1 \cot \mathbf{S}[m] - \mathbf{N}\mathbf{z}$

4. Set 
$$\mathbf{S}[,m] = \mathbf{N}\mathbf{Z}$$

-Set  $\mathbf{S}_n^{<j+1>} = \mathbf{S}$ .

 $c_{FB}($ 

 $c_{MF}(k\mathbf{S}_{n-1}) = c_{FB}(k\mathbf{S}_{n-1}, \mathbf{0}).$ 

1. Ge
$$\mathcal{V}_k$$

where  $S_n^{<i>}$  denotes the *i*-th estimate of the weighted average, with  $S_n^{<0>}$  chosen as a random element of the particle set, and  $\mathcal{M}$  and  $\mathcal{M}^{-1}$  are the orthographic retraction and lifting maps [3].

particles.

5. Computation of the matrix Fisher-Bingham p.d.f. normalization constant

• To update the weights (Equation 3), it is necessary to compute the normalization constants

$$(\mathbf{A}_n, \mathbf{B}_n) \triangleq \int_{\mathcal{V}_{k,l}} \exp\left\{ \operatorname{tr}(\mathbf{A}_n^T \mathbf{S}) + \operatorname{vec}(\mathbf{S})^T \mathbf{B}_n \operatorname{vec}(\mathbf{S}) \right\} d\mathcal{V}_{k,l}(\mathbf{S}),$$
(4)

existing approaches did not perform adequately, we oduced the Quasi Monte Carlo algorithm:

enerate low-discrepancy samples uniformly distributed on

2. Approximate (4) as

$$\operatorname{Vol}(\mathcal{V}_{k,l}) \frac{1}{N_S} \sum_{i=1}^{N_S} \left\{ \operatorname{tr}(\mathbf{A}_n^T \mathbf{X}^{}) + \operatorname{vec}(\mathbf{X}^{})^T \mathbf{B}_n \operatorname{vec}(\mathbf{X}^{}) \right\}$$

where  $N_S$  is the number of samples,  $\mathbf{X}^{< i>}$  is the *i*-th generated sample, and  $Vol(\mathcal{V}_{k,l})$  is the volume of  $\mathcal{V}_{k,l}$ .

6. Computation of the weighted averages on the Stiefel manifold

• Ideally, one would estimate the state as a Karcher mean, i.e., the value of  $\hat{\mathbf{S}}_n$  that minimizes the weighted mean square geodesic distance to the particle set.

• To reduce computational complexity, we evaluated the weighted averages over the Stiefel manifold as

$$\mathbf{S}_{n}^{} = \mathcal{M}_{\mathbf{S}_{n}^{}} \left( \sum_{q=1}^{Q} w_{n}^{(q)} \ \mathcal{M}_{\mathbf{S}_{n}^{}}^{-1} \left( \mathbf{S}_{n}^{(q)} \right) \right), \ i \ge 0,$$

### 7. Numerical Experiment

• We performed numerical simulations with 150 independent trials of 100 synthetic data samples. Particle filters used 300

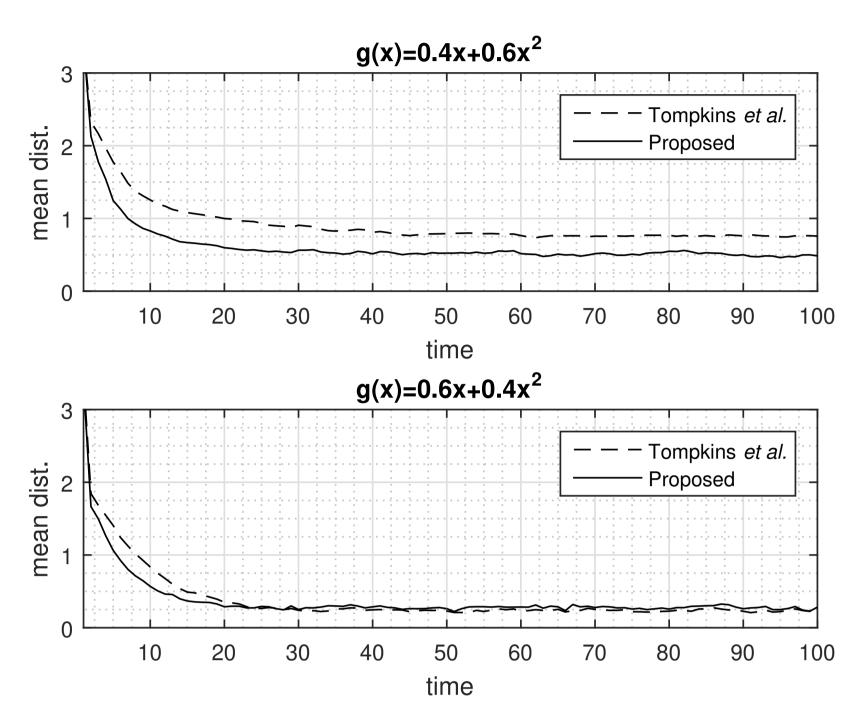


Figure 1: Mean geodesic distance for the proposed algorithm and that of [1] as a function of time, for distinct nonlinear observation functions q(x).

# complexity.

- 894, 2013.



• We assumed that G acts element-wise, so that the Jacobian  $J(s_{n-1})$  is diagonal. The parameters were set to  $\kappa = 150$ ,  $\Omega \triangleq \mathbf{I}_l, \Gamma \triangleq \mathbf{I}_k \sigma^2$ , and  $\Sigma = \mathbf{I}_{kl} \sigma^2$ , with  $\sigma^2 = 0.05, k = 3, l = 2$ . • The algorithms' performance was evaluated in terms of the mean geodesic distance from the true state  $S_n$  to the estimated state  $\hat{\mathbf{S}}_n$ , i.e.,  $d(\mathbf{S}_n, \hat{\mathbf{S}}_n) = \|\operatorname{Exp}_{\mathbf{S}_n}^{-1}(\hat{\mathbf{S}}_n)\|_F$ .

• For stronger nonlinearity (top), the proposed method exhibited an asymptotic error about 30% smaller than the method of [1]

### 8. Conclusions

• For certain choices of G, the proposed method outperforms that of [1] at the expense of increased computational

• Most of the computational complexity of the proposed method is related to drawing samples from and computing normalization constants for the matrix Fisher-Bingham density.

### References

[1] F. Tompkins and P. J. Wolfe, "Bayesian Filtering on the Stiefel Manifold," in Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on. IEEE, 2007, pp. 261–264.

[2] P. D. Hoff, "Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data," Journal of Computational and Graphical *Statistics*, vol. 18, no. 2, pp. 438–456, 2009.

[3] T. Kaneko, S. Fiori, and T. Tanaka, "Empirical arithmetic averaging over the compact Stiefel manifold," IEEE Transactions on Signal Processing, vol. 61, no. 4, pp. 883-