

DISTRIBUTED JOINT TRANSMITTER DESIGN AND SELECTION USING AUGMENTED ADMM Mykola Servetnyk and Carrson C. Fung, Institute of Electronics, National Chiao Tung University

ABSTRACT

- Goal of this work is to design of network in which multiple transmission points(TPs) cooperatively serve users
- TPs jointly precode shared data which aims in improving overall system rate
- TP designs local precoder and reaches consensus with other TPs on leaked interference
- This approach is different as it solves a design problem that involves a coupling constraint which no existing algorithm is able to solve

SYSTEM MODEL & NOTATIONS

Assume the network consists of a set of TPs. Set of users should be served by subset of TPs, known as the cooperating set.

- Indices *i*, *j* for UEs, *q* for TPs
- TPs and UEs have n_T and n_R antennas
- Channel between TP and UE $\mathbf{H}_{i}^{q} \in \mathbb{C}^{n_{R} \times n_{T}}$
- Precoder from TP to UE $\mathbf{F}_{i}^{q} \in \mathbb{C}^{n_{T} \times n_{\text{streams}}}$
- Rev signal $\mathbf{y}_i = \sum_q \mathbf{H}_i^q \mathbf{F}_i^q \mathbf{s}_i + \sum_{j \neq i} \sum_q \mathbf{H}_i^q \mathbf{F}_j^q \mathbf{s}_j + \mathbf{n}_i$

[1] C.-Y. Chang and C.C. Fung. Sparsity enhanced mismatch model for robust spatial intercell interference cancelation in heterogeneous networks. *IEEE Trans. on Comms*, 63(1):125–139, 2015. [2] A. Falsone, K. Margellos, S. Garatti, and M. Prandini. Dual decomposition for multi-agent distributed optimization with coupling constraints. *Automatica*, 84:149–158, 2017. [3] P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In *Fixed-point algorithms for inverse problems in science and engineering*, pages 185–212. Springer, 2011. [4] M. Servetnyk and C. C. Fung. Distributed joint transmission points selection and precoder design using augmented consensus based dual decomposition. unpublished.

PROBLEM FORMULATION AND REFORMULATION

The problem formulated maximizing sum received signal power subject to instantaneous leakage interference and the transmit power constraint. TPs activation controlled by adjusting regularization term. $\max_{\mathbf{F}_{i}^{q}, i \in \mathcal{I}, q \in \mathcal{Q}} \sum_{q} \sum_{q} \left\| \mathbf{H}_{i}^{q} \mathbf{F}_{i}^{q} \right\|^{2} - \alpha \| \mathbf{F}_{i}^{q} \|_{0}^{2} \qquad \max_{\mathbf{Q}, \mathbf{Q}_{c}} \sum_{i} \sum_{q} tr \left(\mathbf{H}_{i}^{q} \mathbf{Q}_{i}^{q} \mathbf{H}_{i}^{qH} \right) - \alpha \mathbf{1}_{n_{T}}^{T} | \mathbf{Q}_{i}^{q} | \mathbf{1}_{n_{T}}$ $s.t.\sum_{q} \left\|\mathbf{H}_{j}^{q}\mathbf{F}_{i}^{q}\right\|^{2} \leq I_{th}, \ i, j \in \mathcal{I}: i \neq j \xrightarrow{\mathbf{Q} \triangleq \mathbf{FF}^{H}} s.t. \sum_{q} tr\left(\mathbf{H}_{j}^{q}\mathbf{Q}_{c \ i}^{q}\mathbf{H}_{j}^{qH}\right) \leq I_{th}, \ i \in \mathcal{I}: j \neq i$ coupling constraint $\sum_{i} \left\| \mathbf{F}_{i}^{q} \right\|^{2} \leq P, q \in \mathcal{Q}$ Use ADMM to futher problem decomposed in 3: Local optimization step **Consensus step** Optimize objective wrt primal Find constrainted variable \mathbf{Q}_c close to primal variable variable **PROPOSED ALGORITHM** Algorithm 1: Distributed consensus optimization using proposed AADMM. **Result:** Precoder matrices $\mathbf{Q}_i^q \ \forall i \in \mathcal{I}, \forall q \in \mathcal{Q}$ **0. Initialize:** $\mathbf{Q}_{s}^{q(0)}, \mathbf{Q}_{c}^{q(0)}, \boldsymbol{\lambda}^{q(0)}, \boldsymbol{\ell}^{q(0)}, \boldsymbol{L}^{q(0)}, m = 0$ while $|r_p^{(m)}| \ge \epsilon_{glo} \& |r_d^{(m)}| \ge \epsilon_{glo} \operatorname{do}$ |m = m + 1**1. Local primal step:** Set p = 0. For each TP while $\|\nabla f_1^q(\mathbf{Q}_i^q)\| \leq \epsilon_{fista} \, \mathbf{do}$ |p = p + 1; Compute $\mathbf{Q}_{i}^{q(p+1)}$) 2. Consensus optimization step Set n = 0. For each TP while $\|\mathbf{Q}_{c}^{q(n+1)} - \mathbf{Q}_{c}^{q(n)}\|_{F} \leq \epsilon_{cons} \mathbf{do}$ |n = n + 1; Update $c^{(n)}$; Objective Receive $\lambda^{q(n+1)}$ and update $\ell^{q(n+1)}$ Update $\mathbf{Q}_{c}^{q(n+1)}$, $S_{ij}^{q(n+1)}$. Update $\boldsymbol{\lambda}^{q(n+1)}$ Receive $S_{ii}^{q(n+1)}$ and update $\mathbf{L}^{q(n+1)}$ **3. Dual ascent step:** compute $\mathbf{Q}_s^{q^{\mathsf{c}}}$ **4. Update ADMM parameter:** $\rho^{(m+1)}$.

KEY REFERENCES

NUMERICAL RESULTS

CONTACT INFO&AKNOWLEDGEMENT

Web: http://cwww.ee.nctu.edu.tw/~cfung/ **Email:** rusly.eic04g@nctu.edu.tw, c.fung@ieee.org

This work has been supported by the Ministry of Science and Technology Grants 107-2221-E-009-071, 108-2922-E-009-041 and Ministry of Education project RSC 107RSA0021.

# of TPs/UEs	Q = 7, K = 21			
t of Antennas	$n_T = 4, n_R = 2$			
I_{th}	$10^{-4}W$			
P^q	1W			
σ^2	$-33 \mathrm{dB}$			
Ref loss(dB)	60			
PL exponent	3.76			
Shadowing	10 dB			
x antenna gain	10 dB			

fista	ϵ_{glo}	μ	au	Nrand	$c^{(n)}$
10^{-6}	10^{-6}	1.1	5	10^{4}	$\frac{10^4}{n+1}$