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Speech can be seen as the product of temporally overlapping gestures
of articulators, each of which regulates the formation of constriction
in vocal tract 1

Applications: ASR, Accent Conversion, Speaker Identification 2
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plane.
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Inverse mapping function is known to be non-linear and non-unique.
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State-of-the-art model for AAI

Bidirectional LSTM

RNNs are known to model the temporal dynamics by processing the
sequence of input samples and maintaining a state information
relative to history.

Preserves smoothing characteristics of articulatory trajectories

Requires adequate amount of data from the target subject.
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Representation Learning

1 To extract the features from the speech frames, we consider a 1D-
CNN layer as first layer.

2 We compute the output of the convolution filter by

Yn = σ(log(|F ∗ xn + b|)) (1)

3 We propose an end-to-end network for AAI by cascading a CNN layer
to the state-of-the-art BLSTM network.
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Dataset

Data Collection: EMA

4
3d electromagnetic articulograph, available http://www.articulograph.de/

SPIRE LAB, IISc, Bangalore 12

1 Electromagnetic articulography (EMA) AG501 was used to record the
articulatory movement data.

1 It has 24 channels to measure the horizontal, vertical and lateral
displacements and angular orientations of a maximum of 24 sensors.

2 Available sampling rate: 250 Hz and 1250 Hz. 4



Dataset

Data Collection
1 Six sensors are connected to obtain twelve articulatory features

denoted by ULx, ULz, LLx, LLz, Jawx, Jawz, TTx, TTz, TBx,
TBz, TDx, TDz.

2 460 phonetically balanced English sentences 5

3 acoustic-articulatory data are recorded from 8 subjects (4 male and 4
female)
–Total: 3.19 hours
–Average duration/subject: 23.97 (± 2.43) minutes.

5
A. Wrench, MOCHA-TIMIT, speech database, Department of Speech and Language Sciences, Queen Margaret University

College,Edinburgh, 1999.
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Experiments and Results

Experimental Setup

Total 460 sentences:
–368 for Train set (80%)
–46 for validation (10%) and test (10%) sets.

Proposed AAI model details:
–1-D CNN as First layer followed by three BLSTM
layers with 150 units
–Linear regression layer at last.

Baseline AAI model details:
–First three are BLSTM layers with 150 units
–Linear regression layer at last.

Evaluation metrics:
–Root Mean Square Error (RMSE)
–Correlation Coefficient (CC).
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Experiments and Results

Experimental Conditions

Analysis on pre-emphasis:
–Without pre-emphasis
–With pre-emphasis=0.97

Data pooling for training:
–Independent training
–Joint training
–Adaptation.

Comparison with Baseline approach:
–End-to-End AAI
–MFCC based BLSTM AAI .
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Experiments and Results

Analysis on pre-emphasis

Table: Performance of AAI with and without pre-emphasis.

Ncf RMSEavg CCavg

Without Pre-emphasis
40 1.81 0.78

100 1.82 0.78
256 1.86 0.77

Pre-emphasis = 0.97
40 1.68 0.81

100 1.66 0.81
256 1.66 0.81

SPIRE LAB, IISc, Bangalore 18



Experiments and Results

0 500 1000 1500 2000 2500 3000 3500

Center Frequency (Hz)

0

50

100

150

200

250
F

ilt
e

r 
In

d
e

x
 (

s
o

rt
e

d
)

M1

M2

M3

M4

F1

F2

F3

F4

Figure: With ( ) and without ( ) pre-emphasis operation.

SPIRE LAB, IISc, Bangalore 19



Experiments and Results

# Filters with center frequency ≤ 1000Hz

0 500 1000 1500 2000 2500 3000 3500

Center Frequency (Hz)

0

50

100

150

200

250

F
ilt

e
r 

In
d

e
x
 (

s
o

rt
e

d
)

129.2
171.6

M1

M2

M3

M4

F1

F2

F3

F4

Figure: With ( ) and without ( ) pre-emphasis operation.

SPIRE LAB, IISc, Bangalore 20



Experiments and Results

Joint training and adaptation

Table: Performance of AAI in terms of RMSEavg (mm) with different training
approaches.

Training Ncf =40 Ncf =100 Ncf =256

Independent 1.68 1.66 1.66

Joint 1.56 1.63 1.60

Adaptation 1.47 1.50 1.49
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Conclusion

Conclusion

Experiments performed with 8 subjects revealed that the proposed
CNN based approach performs on par with MFCC.

Pre-emphasis helps to boost the high frequency components, thereby
higher formant regions and plays an important role in improving the
performance of AAI.

Interestingly, the frequency response is band-pass in nature and center
frequencies are found to be similar to those of mel-scale.
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Conclusion

Conclusion

Experiments performed with 8 subjects revealed that the proposed
CNN based approach performs on par with MFCC.

Pre-emphasis helps to boost the high frequency components, thereby
higher formant regions and plays an important role in improving the
performance of AAI.

Interestingly, the frequency response is band-pass in nature and center
frequencies are found to be similar to those of mel-scale.

This could be due to the fact that the speech gestural information is
maximally preserved when speech signal is processed by auditory
filters such as mel-scale or bark-scale 6.

6
Prasanta Kumar Ghosh, Louis M Goldstein, and Shrikanth Narayanan (2011).
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