

Structural Recurrent Neural Network for Traffic Speed Prediction

Youngjoo Kim, Peng Wang and Lyudmila Mihaylova

The University of Sheffield, United Kingdom, Email: rhymesg@gmail.com, peng.wang@sheffield.ac.uk, I.s.mihaylova@sheffield.ac.uk

Introduction

•Traffic Prediction: forecasting of future traffic state based on historical traffic data

•Traffic Data: usually measured by magnetic induction loop detectors

- Traffic speed
- Traffic flow

•Spatio-Temporal Characteristic of Traffic Data

- Sequence of traffic data on a road segment:
 a time series
- Each time series on each road segment has a **spatial relationship** with each other

Deep Neural Networks for Traffic Prediction

- Convolutional neural networks (CNNs)
 - Effective in understanding spatial features
- Recurrent neural networks (RNNs)
- Traffic prediction as a time series forecasting
- Traffic data as spatio-temporal images
- CNN or capsule network (CapsNet)¹⁾ to capture spatio-temporal relationship

Purpose

 To develop a traffic prediction method that represents well both the spatial and temporal dynamics of the traffic and is computationally efficient.

Contribution

- A structural RNN (SRNN) approach for traffic prediction that incorporates the topological information of the road network.
 The SRNN proposed in ²⁾ has been usually applied to driver maneuver anticipation, human motion forecasting, human activity anticipation, and human trajectory prediction.
- The prediction performance and computational efficiency are validated with real data from the SETA EU project.

Methods

Problem Definition

- Given a sequence of traffic speed data $\{x_v^t\}$ at time steps t = T - l + 1, ..., T, we predict the future traffic speed x_v^{T+1} on each road segment v = 1, ..., N.

T: current time step

- *l*: the length of data sequence
- Spatio-Temporal Graph Representation

(a) Nodes represent road segments and the nodes are inked by spatial edges \mathcal{E}_S and temporal edges \mathcal{E}_T

Methods

Model Architecture

Architecture of the SRNN in perspective of node v drawn with the unrolled spatio-temporal graph.

- Uses 3 sets of RNNs: node RNN, spatial edge RNN, temporal edge RNN.

- Feature vector of spatial edge RNN: current traffic speed values of adjacent road segments.

- Feature vector of temporal edge RNN: current and previous traffic speed values of each road segment.

- Feature vector of node RNN: current traffic speed value concatenated with the results of the above edge RNNs.

Validation with Real Data

- Traffic speed and road network dataset from SETA EU project, measured every 15 minutes in the central Santander city of Spain for the year of 2016.
- Compare the performance of the proposed SRNN with the CapsNet-based approach¹⁾ and other approaches
 - Task 1: prediction based on 10-time-step data
 - Task 2: prediction based on 15-time-step data

Validation with Real Data

Two different sets of road segments used in the experiment. Each set contains 50 road segments marked in red.

Speed prediction performance (unit: km/h).

	CapsNet		SRNN	
	MAE	RMSE	MAE	RMSE
Task 1	5.720	9.133	5.632	8.906
Task 2	5.741	9.172	5.588	8.975

MAE: mean absolute error / RMSE: root mean squared error

Number of trainable parameters.

	CapsNet	SRNN	
Task 1	5.1 x 10 ⁷	1.1 x 10 ⁶	
Task 2	7.6 x 10 ⁷		

Acknowledgements

The authors appreciate the support of the SETA project funded by the European Unions Horizon 2020 research and innovation program under grant agreement no. 688082.

References

1) Y. Kim, P. Wang, Y. Zhu, and L. Mihaylova, "A Capsule Network for Traffic Speed Prediction in Complex Road Networks", *Proc. from the IEEE SDF Workshop*, 2018.

2) A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, "Structural-RNN: Deep Learning on Spatio-temporal Graphs", *Proc. from the ICVPR*, 2016.