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MOTIVATION
• Distributed transmission line model
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• Detecting faults in electrical cables and water pipelines, e.g. Blockages and Leakages.
• Conventional reconstruction is limited in resolution since the measurements are often restricted to

low frequencies.
• Previous work [2] has proven that the location of discrete points in 1D could be precisely obtained

if they are separated by at least 2/fc given Fourier samples could be obtained up to fc.

MODEL
• Point faults ∆G(x) model the point shunt

conductance (partial short) in the transmis-
sion lines or the leakage in water pipelines.

• By using the Born approximation [1], the
fault ∆G(x) are related to scattered param-
eter through a Fourier Transform:

F−1[S11(k)] (2x) = −1

2
∆G(x)Z0, (1)

where the S11(k) is often limited in |f | ≤ fc.

• Conventional reconstruction results of
point faults ∆G(x) with different fc.
3 point faults (∆G(0.105m) = 1/1900Ω,
∆G(0.205m) = 1/1700Ω and ∆G(0.319m) =
1/1000Ω) are included.
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SUPER-RESOLUTION SCHEME
• The inverse profile can be written as a

weighted superposition of spikes

P = F−1[S11(f)] (t) =
s∑

j=1

ajδtj . (2)

• The band limited measurement S11 is re-
lated to the profile P as S11 = FBP [2].

• To reconstruct P exactly from the band lim-
ited measurement S11, the following `1 min-
imization objective has been proposed [2]:

min
P̃
‖P̃‖`1 s.t. S11 = FBP̃ . (3)

RESTRICTED ISOMETRY PROPERTY

Definition 1. For each integer s = 1, 2, ..., define the
isometry constant δs of a linear map A as the smallest
number such that

(1− δs)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δs)‖x‖2`2

holds for such s-sparse signal x. x is said to be s-sparse
if it has at most s nonzero entries.

Remark. A necessary and sufficient condition for well-
posedness of Eq. (3) with s-sparse P requires that F̂B sat-
isfies the Restricted Isometry Property with δ2s < 1, where
F̂B is FB with its columns normalized.
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CONDITIONAL WELL-POSEDNESS
• The cross-correlations of any two columns,

i.e. F̂ti corresponds to ti and F̂tj corre-
sponds to tj , in F̂B can be written as∣∣∣〈F̂ti , F̂tj 〉

∣∣∣
‖F̂ti‖`2‖F̂tj‖`2

=

∣∣∣∣ sin [π(2fc + 1)|ti − tj |]
(2fc + 1) sin(π|ti − tj |)

∣∣∣∣ .
• The cross-correlation of two consecutive

columns in F̂B can be seen to be close to
1. Meanwhile, the cross-correlation of two
columns in F̂B decreases if their separation
increases.

• By restricting the minimal separation of dis-
crete faults as ∆(T ) ≥ n

2fc
(n ∈ N), the up-

per bound of the isometry constant will be

δ2s ≤

∑j∈E2s\Ei
i∈E2s−1

c(ti, tj)
[
|pti |

2 +
∣∣ptj ∣∣2]∑2s

i=1 |pti |2
(4)

≤
s−1∑
d=1

2

(nd+ 0.5)π
+

1

(ns+ 0.5)π
.
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Definition 2. Let T = {tj} be the support of P in
Eq. (2), then the minimum separation of spikes in P
is defined as

∆(T ) = min
t,t′∈T,t 6=t′

∣∣t− t′∣∣
∆
,

where |t− t′|∆ is the wrap-around distance, e.g. for
t ∈ [0, 1], t = 0 and t′ = 3

4
, |t− t′|∆ = 1

4
.

RESULTS AND SIMULATION
Theorem 1. If s ≤ 4, there exists a constant δ2s < 1
such that

(1− δ2s)‖P‖2`2 ≤ ‖F̂BP‖2`2 ≤ (1 + δ2s)‖P‖2`2 (5)

holds for any 2s-sparse signal P with its support sat-
isfying ∆(T ) ≥ 1

2fc
.

Theorem 2. If 5 ≤ s ≤ 18, there exists a constant
δ2s < 1 such that

(1− δ2s)‖P‖2`2 ≤ ‖F̂BP‖2`2 ≤ (1 + δ2s)‖P‖2`2

holds for any 2s-sparse signal P with its support sat-
isfying ∆(T ) ≥ 1

fc
.

• Reconstruction where Ns = 4. "ZP" is
zero-padding and "SR" is super-resolution.
(a) An example of the reconstruction where
fc = 0.5 GHz and (b) Reconstruction er-
ror (NRMSD) with respect to fc when there
is no noise.
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• Reconstruction error with respect to fc. (a)
Ns = {7, 6, 5, 4} with no noise and (b) Ns =
5 for various SNR levels.
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CONCLUSIONS
• Super-resolution can be used to precisely locate faults when only limited bandwidth is available.

Specifically, up to 4 discrete faults can be super-resolved if they are separated by at least 1/2fc
given Fourier samples could be obtained up to fc.

• Simulations demonstrate the validity of the approach even when noise is included.


