

SUPER-RESOLUTION RESULTS FOR A 1D INVERSE SCATTERING PROBLEM

MOTIVATION

• Distributed transmission line model

- Detecting faults in electrical cables and water pipelines, e.g. Blockages and Leakages.
- Conventional reconstruction is limited in resolution since the measurements are often restricted to low frequencies.
- Previous work [2] has proven that the location of discrete points in 1D could be precisely obtained if they are separated by at least $2/f_c$ given Fourier samples could be obtained up to f_c .

MODEL

- Point faults $\Delta G(x)$ model the point shunt conductance (partial short) in the transmission lines or the leakage in water pipelines.
- By using the Born approximation [1], the fault $\Delta G(x)$ are related to scattered parameter through a Fourier Transform:

$$\mathcal{F}^{-1}[S_{11}(k)](2x) = -\frac{1}{2}\Delta G(x)Z_0, \quad (1)$$

where the $S_{11}(k)$ is often limited in $|f| \leq f_c$.

• Conventional reconstruction results of point faults $\Delta G(x)$ with different f_c . 3 point faults ($\Delta G(0.105m) = 1/1900\Omega$, $\Delta G(0.205 \text{m}) = 1/1700\Omega \text{ and } \Delta G(0.319 \text{m}) =$ $1/1000\Omega$) are included.

Reference

Liwen Jing, Wenjie Wang, Zhao Li, and Ross Murch, "Detecting impedance and shunt conductance faults in lossy transmission lines," IEEE Transactions on Antennas and Propagation, 2018. Emmanuel J Candès and Carlos Fernandez-Granda, "Towards a mathematical theory of super-resolution," Communications on Pure and Applied *Mathematics*, vol. 67, no. 6, pp. 906–956, 2014.

Wenjie Wang, Yue Li, Zhao Li, Ross Murch

SUPER-RESOLUTION SCHEME

• The inverse profile can be written as a weighted superposition of spikes

$$P = \mathcal{F}^{-1}[S_{11}(f)](t) = \sum_{j=1}^{s} a_j \delta_{t_j}.$$
 (2)

- The band limited measurement S_{11} is related to the profile P as $S_{11} = \mathcal{F}_B P$ [2].
- To reconstruct *P* exactly from the band limited measurement S_{11} , the following ℓ_1 minimization objective has been proposed [2]:

 $\min_{\tilde{v}} \|\tilde{P}\|_{\ell_1} \quad \text{s.t.} \quad S_{11} = \mathcal{F}_B \tilde{P}. \tag{3}$

Restricted Isometry Property

Definition 1. For each integer s = 1, 2, ..., define the isometry constant δ_s of a linear map A as the smallest number such that

 $(1 - \delta_s) \|x\|_{\ell_2}^2 \le \|Ax\|_{\ell_2}^2 \le (1 + \delta_s) \|x\|_{\ell_2}^2$

holds for such *s*-sparse signal *x*. *x* is said to be *s*-sparse if it has at most *s* nonzero entries.

Remark. A necessary and sufficient condition for wellposedness of Eq. (3) with s-sparse P requires that $\hat{\mathcal{F}}_B$ satisfies the Restricted Isometry Property with $\delta_{2s} < 1$, where $\hat{\mathcal{F}}_B$ is \mathcal{F}_B with its columns normalized.

where $|t - t'|_{\Delta}$ is the wrap-around distance, e.g. for $t \in [0, 1], t = 0$ and $t' = \frac{3}{4}, |t - t'|_{\Delta} = \frac{1}{4}$.

CONDITIONAL WELL-POSEDNESS

The cross-correlations of any two columns, i.e. $\hat{\mathcal{F}}_{t_i}$ corresponds to t_i and $\hat{\mathcal{F}}_{t_i}$ corresponds to t_i , in $\hat{\mathcal{F}}_B$ can be written as

$$\frac{\left| \langle \hat{\mathcal{F}}_{t_i}, \hat{\mathcal{F}}_{t_j} \rangle \right|}{|\hat{\mathcal{F}}_{t_i}|_{\ell_2} \| \hat{\mathcal{F}}_{t_j} \|_{\ell_2}} = \left| \frac{\sin\left[\pi (2f_c + 1) |t_i - t_j| \right]}{(2f_c + 1) \sin(\pi |t_i - t_j|)} \right|.$$

The cross-correlation of two consecutive columns in $\hat{\mathcal{F}}_B$ can be seen to be close to 1. Meanwhile, the cross-correlation of two columns in $\hat{\mathcal{F}}_B$ decreases if their separation increases.

By restricting the minimal separation of discrete faults as $\Delta(T) \geq \frac{n}{2f_c}$ $(n \in \mathbb{N})$, the upper bound of the isometry constant will be

$$\Delta(T) = \min_{t,t' \in T, t \neq t'} \left| t - t' \right|_{\Delta},$$

CONCLUSIONS

• Super-resolution can be used to precisely locate faults when only limited bandwidth is available. Specifically, up to 4 discrete faults can be super-resolved if they are separated by at least $1/2f_c$ given Fourier samples could be obtained up to f_c .

• Simulations demonstrate the validity of the approach even when noise is included.

RESULTS AND SIMULATION

such that

isfying $\Delta(T) \geq \frac{1}{2f_c}$.

 $\delta_{2s} < 1$ such that

Theorem 1. If $s \leq 4$, there exists a constant $\delta_{2s} < 1$

 $(1 - \delta_{2s}) \|P\|_{\ell_2}^2 \le \|\hat{\mathcal{F}}_B P\|_{\ell_2}^2 \le (1 + \delta_{2s}) \|P\|_{\ell_2}^2 \quad (5)$

holds for any 2s-sparse signal P with its support sat-

Theorem 2. If $5 \le s \le 18$, there exists a constant

 $(1 - \delta_{2s}) \|P\|_{\ell_2}^2 \le \|\hat{\mathcal{F}}_B P\|_{\ell_2}^2 \le (1 + \delta_{2s}) \|P\|_{\ell_2}^2$

holds for any 2s-sparse signal P with its support satisfying $\Delta(T) \geq \frac{1}{f_c}$.

• Reconstruction where $N_s = 4$. "ZP" is zero-padding and "SR" is super-resolution. (a) An example of the reconstruction where $f_c = 0.5$ GHz and (b) Reconstruction error (NRMSD) with respect to f_c when there is no noise.

• Reconstruction error with respect to f_c . (a) $N_s = \{7, 6, 5, 4\}$ with no noise and (b) $N_s =$ 5 for various SNR levels.

