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Motivation
Why SAVED-KS ?
I VB: analytical approximations to the posterior

distributions of interest even when exact inference
of these distributions is intractable.

I Propose a novel fast algorithm called space
alternating variational estimation with Kronecker
structured dictionary learning (SAVED-KS), which
is a version of VB(-SBL) pushed to the scalar level.

I The component-wise approach of SAVE compared
to SBL renders it less likely to get stuck in bad
local optima and its inherent damping (more
cautious progression) also leads to typically faster
convergence of the non-convex optimization process

I Unstructured KS dictionary matrices learning

Sparse Bayesian Learning

I Bayesian Compressed Sensing: 2-layer hierarchical
prior for x as in [Tipping:JMLR01, WipfRao:TSP04],
inducing sparsity for x.
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I SBL which is geared towards compressed sensing
assuming sparse unknown vectors. It’s just that the
SBL approach works well in the case of relatively
limited date (for a given state-space dimension) in
which case estimation emphasis is given to large
unknowns and small unknowns get more or less
ignored.

I We apply the (Gamma) prior to the precision of the
state x, allowing to sparsify the components of x.

Application: Massive MIMO Channel
Estimation

We get for the matrix impulse response of a time-varying
frequency-selective MIMO channel H(t, τ ),

H(t, τ ) =
∑Np

i=1Ai(t) e
j2π fi thr(φi) hTt (ψi) p(τ − τi) .

with Np (specular) pathwise contributions where

Massive MIMO Channel Estimation

I Ai: complex attenuation, fi: Doppler shift
I ψi: AoD (azimuth, elevation, polar), φi: AoA

(azimuth, elevation, polarization)
I τi: path delay (ToA),ht(.), hr(.): Nt/Nr × 1 Tx/Rx

antenna array response,p(.): pulse shape (Tx filter)

The channel impulse response H has per path a rank one
contribution in four dimensions (Tx and Rx spatial multi-
antenna dimensions, delay spread and Doppler spread).
Hence, going to the frequency domain, we get

vec(H(1 : t, f1 : f2)) =
∑Np

i=1Aiht(ψi)⊗ hr(φi)⊗ vf(τi)⊗ vt(fi).

where vf(.), vt(.) are appropriate Vandermonde vectors
(possibly subsampled in the case of vf(.)). Hence we get a
sum of rank one 4D tensors. hr, ht: Kronecker structure in
the case of polarization or in the case of 2D antenna arrays
with separable structure [Sidiropoulos:icassp18].
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Let Yi1,...,iN represents the i1i2...i
th
N element of the tensor and

y = [y1,1,...,1, y1,1,...,2...., yI1,I2,...,IN ]T , then it can be verified
that [Sidiropoulos:TSP17],
y = (A1 ⊗A2...⊗AN)x + w,w ∼ N (0, γ−1I),
Matrix Unfolding:Y(n) = AnX

(n)(AN ⊗ ...An+1 ⊗An−1...⊗A1)
T ,

q(x,α, γ,A) = qγ(γ)
M∏
i=1

qxi(xi)
M∏
i=1

qαi(αi)
M∏
i=1

N∏
j=1

qaj,i(aj,i).

Variational Bayesian Inference
I VB compute the factors q by minimizing the

Kullback-Leibler distance between the true
posterior distribution p(x,α, γ,A/y) and the
q(x,α, γ,A).

KLDV B = KL (p(x,α, γ,A/y)||q(x,α, γ,A)) .

I Equivalent to maximizing the evidence lower bound
(ELBO) [Tzikas:SPMag08], θ = {x,α, γ,A}.

ln p(y) = L(q) + KLDV B, where,

L(q)=
∫
q(θ) ln p(y,θ)

q(θ) dθ, KLDV B = −
∫
q(θ) ln p(θ/y)

q(θ) dθ.

ln(qi(θi)) =< ln p(y,θ) >k 6=i +ci,

SAVED-KS Equations

Joint Distribution:
ln p(y,θ) = N ln γ − γ ||y −Ax| |2+
M∑
i=1

(
lnαi − αi|xi|2

)
+

M∑
i=1

((a− 1) lnαi + a ln b− bαi)

+(c− 1) ln γ + c ln d− dγ + constants.

Gaussian q for xi or for aji (Multivariate):
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Gamma q for hyper-parameters
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Joint VB for KS Matrices

Complex Matrix Normal Distribution

Mj = Âj =< γ > BjΨj,

Ψj = (< γ > X
N⊗

k=1,k 6=j
< AT

kA∗k > XH)−1,X = diag (x)

Bj is with the first row of (Y(j) < (
N⊗

k=1,k 6=j
Ak)

∗ >< XH >)

removed.
SAVED-KS SBL Algorithm

Given: y,A,M,N .
Initialization: a, b, c, d are taken to be very low, on
the order of 10−10. α0

i = a/b,∀i, γ0 = c/d and σ2 ,0
i =

1
||Ai||2γ0+α0

i
,x0 = 0.

At iteration t + 1,
I Update σ2 ,t+1

i , x̂t+1
i ,∀i from using xt+1

i− and xti+.

I Update Âj,i,∀i, j or Aj,∀j.
I Compute < x2 ,t+1

i > and update αti.
I Update the noise variance, γt+1.
I Continue steps 1− 4 till convergence of the

algorithm.

Comparison to SotA

I Lowering Complexity: No matrix inversions
compared to standard SBL and ALS.

I Improving Convergence compared to standard
ALS.

Identifiability
I The local identifiability (upto permutation

ambiguity) of the KS DL is ensured if the FIM is
non-singular.I
J(θ,x) = [J(θ) J(x)], J(θ) = [J(θ1) .....J(θN)]
where, J(θj) = F(x)(θ1 ⊗ ...IIjPj ....⊗ θN),

J(x) = [ F1(
N⊗
j=1

θj), ...., FM(
N⊗
j=1

θj)) ].
I

FIM =
E(γ)J(θ)HJ(θ) 0 0 0

0 E(γ)J(x)HJ(x) + E(Γ) 0 0
0 0 aE(Γ−2) 0
0 0 0 N ′E(γ−2)


I For the FIM analysis (with known support of x),

then E(γ)J(x)HJ(x) + E(Γ) and aE(Γ−2)

becomes invertible if
N∏
j=1

Ij > K. Assuming

N∏
j=1

Ij >
N∑
j=1

(Ij − 1)Pj, i.e. no. of degrees of freedom

in the dictionary <
N∏
j=1

Ij, FIM is non-singular.

I Possibility of FIM singularity even under single
measurement vector case.

I Mixture of P (< N) Vandermonde matrix factors
and non-parametric KS factors: The identifiability
conditions can be restated as,
N∏
j=1

Ij >
P∑
j=1

Pj +
N∑

j=P+1

(Ij − 1)Pj.

Numerical Results
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SAVE with ALS for Dictionary Learning

Proposed SAVE with Dictionary Learning (SAVED)

Proposed SAVE with Joint VB for Dictionary Learning

SAVE with Known Dictionary Matrix

I1 = 4, I2 = 10, I3 = 4.
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SAVE with ALS for Dictionary Learning

Proposed SAVE with Dictionary Learning (SAVED)

SAVE with Joint VB for Dictionary Matrix

SAVE with Known Dictionary Matrix

Convergence behaviour (20 dB).

Conclusion and Future Work

I Convex combination of structured and unstructured
KS factor matrices, For eg, DoA response closeness to
the vandermonde.

I Asymptotic performance analysis, mismatched CRBs.


