

Abstract

GOAL: An attempt to understand the DNNs from a statistical perspective

HOW: Statistical properties of bottleneck (BN) layer pre-activations (Z) and activations (Y) are studied

CONTRIBUTIONS:

1. Distribution of the NN activation in the BN layer $\mu_z o 0$ $z \sim \mathcal{N}(z; 0, \sigma_z^2)$ was analytically derived

2. Statistical properties of the BN features were empirically studied and compared with analytic pdf

3. Sparsity of ReLU was (re-)explained

4. Post-processing of the BN features through statistical normalisation for ASR were investigated

EXPERIMENTS: Aurora-4, train by clean/additive

RESULTS: Up to 2% absolute (9% relative) performance gain (WER reduction) was achieved in mismatch condition

$$\mathbf{X} \longrightarrow \mathbf{\Sigma} \xrightarrow{\mathbf{Z}} \mathbf{Y}$$

$$\mathbf{y} = \mathbf{f}(\mathbf{w}^T \mathbf{x}) = \mathbf{f}(\mathbf{z}) \Rightarrow \mathbf{z} = \mathbf{f}^{-1}(\mathbf{y})$$

 $P_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(z)$

$$P_Y^{\text{tanh}}(y) = \frac{1}{1-y^2} P_Z(\frac{1}{2}\log\frac{1+y}{1-y})$$

ON THE USEFULNESS OF STATISTICAL NORMALISATION OF **BOTTLENECK FEATURES FOR SPEECH RECOGNITION**

Erfan Loweimi, Peter Bell and Steve Renals

The Centre for Speech Technology Research (CSTR), University of Edinburgh {e.loweimi, peter.bell, s.renals}@ed.ac.uk

Assumptions for Approximating $P_{z}(z)$

1. Central Limit Theorem (CLT)

 $z \sim \mathcal{N}(z; \mu_z, \sigma_z^2)$

- 2. Prob(z > 0) \approx Prob(z < 0)

Table 1: WER for Aurora-4 (Kaldi-LDA-MLLT).						
Feature	А	В	C	D	Ave4	
BN (baseline)	3.87	7.96	21.80	32.72	16.58	
BN+MN	3.64	7.66	21.02	32.20	16.13	
BN+MVN	4.07	8.31	20.34	33.04	16.44	
BN+Gauss	4.15	8.12	20.18	32.67	16.28	
BN+HEQ	3.96	7.43	19.76	30.87	15.50	
BN+PCA	3.75	7.88	21.56	32.46	16.41	
BN+DCT	3.77	7.77	21.76	32.49	16.44	

* Glorot, et al, "Deep Sparse Rectifier Neural Networks", 2011 -50% negative preacitivations $\rightarrow 50\%$ of activations are 0

* Our argument: Coincidence of the positive zero (0^+) activation with the non-linear operating mode regions - Before zero \rightarrow Blocked; After zero \rightarrow Linear

STATISTICAL NORMALISATION OF THE BOTTLENECK (BN) FEATURES

DNN (BN)	DNN Post- Processing	Back end
-------------	----------------------------	-------------

Evnorimental Deculte