ON THE USEFULNESS OF STATISTICAL NORMALISATION OF BOTTLENECK FEATURES FOR SPEECH RECOGNITION

Erfan Loweimi, Peter Bell and Steve Renals

The Centre for Speech Technology Research (CSTR), University of Edinburgh

Abstract

GOAL: An attempt to understand the DNNs from a statistical perspective

HOW: Statistical properties of bottleneck (BN) layer pre-activations (Z) and activations (Y) are studied

CONTRIBUTIONS

1. Distribution of the NN activation in the BN layer was analytically derived
2. Statistical properties of the BN features were empirically studied and compared with analytic pdf 3. Sparsity of ReLU was (re-)explained
3. Post-processing of the BN features through statistical normalisation for ASR were investigated

EXPERIMENTS: Aurora-4, train by clean/additive RESULTS: Up to 2\% absolute (9\% relative performance gain (WER reduction) was achieved in mismatch condition

STATISTICAL DISTRIBUTION OF BOTTLENECK FEATURES

$\mathrm{y}=\mathrm{f}\left(\mathbf{w}^{T} \mathbf{x}\right)=\mathbf{f}(\mathbf{z}) \Rightarrow \mathbf{z}=\mathbf{f}^{-\mathbf{1}}(\mathbf{y})$
$\mathrm{P}_{Y}(y)=\left|\frac{d}{d y} f^{-1}(y)\right| P_{Z}\left(f^{-1}(y)\right)$
$P_{Y}^{\mathrm{tanh}}(y)=\frac{1}{1-y^{2}} P_{Z}\left(\frac{1}{2} \log \frac{1+y}{1-y}\right)$

Assumptions for Approximating $\mathrm{P}_{7}(\mathrm{z})$

1. Central Limit Theorem (CLT)

$$
\mathrm{z} \dot{\sim} \mathcal{N}\left(z ; \mu_{z}, \sigma_{z}^{2}\right)
$$

2. $\operatorname{Prob}(z>0) \approx \operatorname{Prob}(z<0)$

Non-linearity of NNs and Density

Shape Parameter

$\sigma_{z}<1 \rightarrow$ Nodes/NN operates in linear mode
$\sigma_{z}>1 \rightarrow$ Nodes/NN operates in non-linear mode

(1) Zero mean approximation for Z is reasonable (2) $\sigma_{z}>1==\gg$ DNN operates in the non-linear mode (3) Distribution of Z can be easily fitted by a GMM (4) Distribution of Y mayNOT be fitted by a GMM (5) DNN decorrelates the features in the BN layer (6) Distribution of Y matches the derived equation

Sparsity of ReLU

* Glorot, et al, "Deep Sparse Rectifier Neural Networks", 2011 -50% negative preacitivaitons $\rightarrow 50 \%$ of activations are 0
* Our argument: Coincidence of the positive zero (0^{+}) activation with the non-linear operating mode regions - Before zero \rightarrow Blocked; After zero \rightarrow Linear

STATISTICAL NORMALISATION OF THE

 BOTTLENECK (BN) FEATURES

Experimental Results
Table 1: WER for Aurora-4 (Kaldi-LDA-MLLT).

Feature	A	B	C	D	Ave4
BN (baseline)	3.87	7.96	21.80	32.72	16.58
BN+MN	3.64	7.66	21.02	32.20	16.13
BN+MVN	4.07	8.31	20.34	33.04	16.44
BN+Gauss	4.15	8.12	20.18	32.67	16.28
BN+HEQ	3.96	7.43	19.76	30.87	15.50
BN+PCA	3.75	7.88	21.56	32.46	16.41
BN+DCT	3.77	7.77	21.76	32.49	16.44

