
Speech Technology

PhoneSpoof: A new dataset for spoofing attack detection in telephone channel

Galina Lavrentyeva^{1,2}, Sergey Novoselov^{1,2}, Marina Volkova², Yuri Matveev^{1,2}, Maria De Marsico³

¹ITMO University, St. Petersburg, Russia; ²STC-innovations Ltd., St. Petersubrg, Russia; ³Sapienza University of Rome, Rome, Italy {lavrentyeva, novoselov, volkova, matveey}@speechpro.com, demarsico@di.unroma1.it

ASVspoof initiative [1,2] has significantly pushed forward the development of spoofing detection methods for ASV

Research on the topic has thus far only made use of program codecs and other telephone channel emulations [3]

Smart

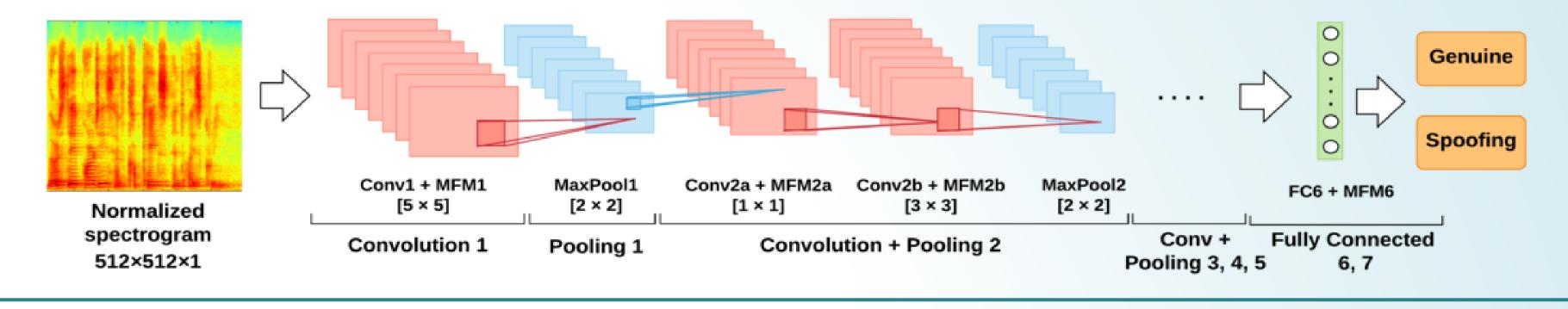
Logger II

senario

Smart Caller

scenario

G.711 PCM	
art Logger II	սիրի
	<u> </u>
Landline ph	one
PCM	
► Smart Caller ► IIIIIII	սիրի


Table 1. Total duration of collected spoofing trials in microphone and telephone channels in hours

set	Language	Microphone Recorded		Recorded	
		channel	R1	R2	
f2015 _{sp}	eng	177.1	361.6	856.6	
of2015 _g	eng	160.2	51.2	_	
ech	eng	5.47	-	_	
	eng	203.4	-	19.9	
M	rus	217.0	-	15.1	
zar	eng	210.8	_	-	
С	rus	523.1	_	48.4	
J	eng	236.3	6.2	53.4	
dex	rus	201.7	3.3		
alo	eng	314.8	6.6	46.0	
gle	rus	240.6	3.3	48.7	
oird	eng	95.9	-	1.64	
nrases	eng	150.7	_	29.9	
s 2015	eng	142.8	-	30	

Anti-Spoofing system

Anti-spoofing systems under consideration:

- Different CQCC-GMM based anti-spoofing systems for logical (Voice Conversion, TTS) and physical (Replay) spoofing detection
- A unified Light CNN-based approach for both logical and physical spoofing attack detection

Fynor	imont	al rocu	ltc	Table 4 . I	Experime	nt results	for differe	ent spoofi	ng types	for LCNN, I
Experimental results		ASVspoof2015 R1			ASVspoof2015 R2		L5 R2			
Table 2 . Experiment results for CQCC-GMM based anti- spoofing system , EER(%)		TTS VC		С	TTS		VC			
		2.74 3.00		00	0.97		1.27			
Emulation type	original 8kH	6.10 codec		Google R2		Yandex R2		IBM R2		Replay
ASVspoof2015	2.24 45.4	5 46.35		Eng	Rus	Eng	Rus	Eng	Rus	R2
Table 3 . Experiment results for different languages, EER(%)		1.88	0.86	0.20	1.49	2.45	3.16	1.77		
Training set	Evaluation set			Table 3 . Experiment results for						
L Englishtering	Russian _{eval}	5.52		Training set E1-Emulated _{train}		E	Evaluation set		EER (%)	
	English _{eval}	0.03				— F2	E2-Emulated _{eval}		10.98	
English _{train} + Russ	Russian _{eval}	0.51		E2-Emulated _{train}					7.79	
	English _{eval}	0.14	0.1/			R1-Recorded _{eval}		26.85		
	Englisheval			R1-Recorded _{train}		E2	E2-Emulated _{eval}		49.90	
spoof: ASVspoof _{sp} + Google(eng) + Yandex(eng) Russian _{train/eval} - geniuine : {RusTelecom};		E1-Emulat {ASVspoof E2-Emulat E2-Emulat	_{sp} + Google ed _{train} - ge	e(eng+rus) eniuine : {A	+ Yandex (SVspoof _g }	(eng + rus) E2; spoof:	} E1 {ASVspoo	f _{sp} }E2		

Conclusions

- PHONESPOOF data collection consists of audio spoofing attacks collected through real telephone channels
- important for the developing of anti-spoofing systems suitable for real applications
- Adding target language to the training set enhance spoofing detection performance on this language
- Efficiency of deep learning frameworks for solving the considered task is confirmed

References

- 1. Z. Wu, T. Kinnunen, N. W. D. Evans, J. Yamagishi, C. Hanili, M. Sahidullah, and A. Sizov, "Asvspoof 2015: the first automatic speaker verification spoofing and countermeasures challenge," in INTERSPEECH, 2015.
- 2. T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. W. D. Evans, J. Yamagishi, and K.-A. Lee, "The asyspoof 2017 challenge: Assessing the limits of replay spoofing attack detection," in INTERSPEECH, 2017
- 3. H. Delgado, M. Todisco, N. Evans, M. Sahidullah, W. M. Liu, F. Alegre, T. Kinnunen, and B. Fauve, "Impact of bandwidth and channel variation on presentation attack detection for speaker verification," BIOSIG 2017
- 4. "STC H219 overview." [Online]. Available: http://speechpro.com/product/voice-recording/smartlogger2#tab4

• Regular telephone channel emulation does not quite match the realistic telephone spoofing attacks scenario which is highly

