

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

V-SENSE

TOWARDS GENERATING AMBISONICS USING AUDIO-VISUAL CUE FOR VIRTUAL REALITY

Aakanksha Rana*, Cagri Ozcinar*, Aljosa Smolic

Problem And Objective

- Automatic spatial audio estimation based on audio-visual cue.
- 360 Audio-Visual Dataset (360AVD) which contains 265 video clips with a well-annotated ground-truth providing the sound direction and location.
- Propose evaluation criteria: 360 SSD and 360 OvErr.

360 Video

Cubemap Projection Equire

Equirectangular Projection

- Stage I: Representation, where audio and visual signals are pre-processed. Visual Signal is transformed into equirectangular or cubical format.
- Stage II: Feature Embedding, where we used :
 - VGG-19 network to compute feature maps from 15 frames and average them to obtain one feature map.
 - Extract the 128-dimensional audio representation, using a pre-trained VGGish network.
- Stage III: Prediction Module, to predict the 3D volumetric maps.

SSM Module [1]--- 3 convlayers
$$S_p^{SsM} = f(\sigma(\mathcal{L}^T conv_l))$$

• ATT Module [2]--- Uses attention module

$$S_p^{Att} = f(softmax(\omega \cdot \rho(l_v) + l_a)),$$

• Stage IV: Ambisonics Encoding, (B format).

 360° Video
 (I)
 (II)
 (IV)

 (I)
 (II)
 (IV)

Metrics

• 360- SSD: Euclidean distance between the centre of the predicted i-th sound source, and the centre of ground truth i-th sound source.

All distances are normalized, and the probability spheres have radius 0.5

• 360- OvErr: Ratio of an intersection of the predicted and ground truth probability volumes to the union.

Evaluations

• 265 Omnidirectional videos.

200 0							
Models	360-SSD			360-OvErr			
	<i>ϵ</i> =0.6	0.5	0.4	0.6	0.5	0.4	
SsM-Cubical	$\textbf{0.71} \pm \textbf{0.04}$	0.72 ± 0.08	0.74 ± 0.06	$\textbf{0.71} \pm \textbf{0.06}$	0.77 ± 0.05	0.82 ± 0.04	
SsM-EquiR	0.75 ± 0.06	0.77 ± 0.09	0.79 ± 0.07	0.78 ± 0.07	0.84 ± 0.06	0.88 ± 0.08	
Att-Cubical	0.72 ± 0.05	0.73 ± 0.05	0.74 ± 0.04	0.72 ± 0.05	0.74 ± 0.08	0.78 ± 0.08	

Dataset

- 265 Omnidirectional Video clips.
- Annotated sound source and direction.
- Each clip is 10 secs.
- Categories: presentation, documentary, debates and casual discussions.
- Data: https://github.com/V-Sense/360AudioVisual

The Cuolear	0.72 ± 0.05	0.75 ± 0.05	0.71 ± 0.01	0.72 ± 0.05	0.71 ± 0.00	0.70 ± 0.00
Att-EquiR	0.76 ± 0.04	0.77 ± 0.08	0.78 ± 0.06	0.84 ± 0.06	0.85 ± 0.06	0.86 ± 0.06

Quantitative Results on 360AVD Dataset. The scores are averaged on 265 ODVs for all models.

(d) Original-Cubical (e) SsM-G

(e) SsM-Cubical (f) Att-Cubical

REFERENCES

 A. Owens et al., "Audio-visual scene analysis with self-supervised multisensory features," ECCV, 2018.
 T. Yapeng et. al., "Audio-visual event localization in unconstrained videos," ECCV, 2018

2019 IEEE International Conference on Acoustics, Speech and Signal Proccessing Contact: <u>ranaaa@tcd.ie</u>

v-sense.scss.tcd.ie