Latent Representation Learning for Artificial Bandwidth Extension using a **Conditional Variational Auto-encoder**

Pramod Bachhav, Massimiliano Todisco and Nicholas Evans, EURECOM, France, emails: {bachhav, todisco, evans}@eurecom.fr

Introduction

- □ traditional telephony infrastructure is typically limited to a bandwidth of 0.3-3.4 kHz, referred to as narrowband (NB)
- wider bandwidths generally correspond to higher quality speech
- □ artificial bandwidth extension (ABE) methods estimate missing highband (HB) components at 3.4-8kHz; a regression problem
- □ front-end *explicit memory* via neighboring speech frames augments complexity and latency of a standard regression model
- our own work addressed complexity issue using principal component analysis (PCA) [1] and semi-supervised stacked auto-encoders (SSAEs) [2]
- □ this work further investigates probabilistic graphical models (PGMs) for dimensionality reduction (DR), to learn better performing representations tailored specifically to ABE

Conditional variational auto-encoder (CVAE)

- □ PGMs such as VAEs and CVAEs are capable of modelling complex data distributions
- □ they produce probabilistic latent representations and are used to generate new data
- \Box a CVAE is a deep generative model, $p_{\theta}(y, z|x) = p_{\theta}(z)p_{\theta}(y|x, z)$ where $z \sim p_{\theta}(z)$ and $y \sim p_{\theta}(y|x,z)$
- \Box in order to maximise the conditional likelihood, $p_{\theta}(y|x) = \int p_{\theta}(z)p_{\theta}(y|x,z)dz$, CVAEs introduce a posterior distribution $q_{\phi}(z|y)$ as an approximation to the intractable true posterior $p_{\theta}(\mathbf{z}|\mathbf{y})$
- □ this formulation gives the variational lower bound on likelihood, that can be optimised jointly w.r.t θ and ϕ : $\mathcal{L}(\phi, \theta; \mathbf{x}, \mathbf{y}) = -D_{KL}[q_{\phi}(\mathbf{z}|\mathbf{y}) || p_{\theta}(\mathbf{z})] + E_{q_{\phi}(\mathbf{z}|\mathbf{y})}[\log p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{z})]$
- □ first term: acts as a regulariser; second term: is the negative reconstruction error
- \Box both encoder $q_{\phi}(z|y)$ and decoder $p_{\theta}(z|y)$ are modelled using deep neural networks
- □ our initial investigations showed that vanilla VAE does not produce useful NB representations for estimation of missing HB features; signifies the importance of supervised learning

Contributions

- the first application of CVAEs to DR for regression tasks such as ABE
- □ the combination of CVAE with a probabilistic encoder in the form of an auxiliary neural network which derives the *conditioning variable*
- □ the joint optimisation to extract compact probabilistic NB latent representations for estimation of missing HB components
- □ a thorough comparison of CVAE performance to alternative DR techniques such as PCA, SAE, SSAE

Experimental setup and results

- □ databases: TIMIT database divided into training (4848 utterances) and validation (192 utterances) sets. TSP speech database (1278 utterances) used as test set
- □ implementation details: 20ms frame duration; 10ms overlap; 1024-point FFT; square root Hann window (for analysis and synthesis)

α	2	5	
D_{KL} (training phase)	0.96	0.21	3
RE (training phase)	4.73	7.40	
RE (testing phase)	11.40	9.85	

Presented by Pramod Bachhav at 44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019, Brighton, UK.

EURECOM Sophia Antipolis

$t_{ m RMS-LSD}$ (dB)	$d_{ m COSH}$ (dB)	MOS-LQO
6.95	1.43	3.21
7.35	1.45	3.14
12.45	2.96	1.95
7.54	1.50	3.03
8.64	1.67	2.75
8.60	1.67	2.75
10.50	2.11	2.26
6.80	1.34	3.28
6.59	1.31	3.34
6.69	1.30	3.31

Objective assessment results. $d_{RMS-LSD}$ and d_{COSH} are distance measures (lower values indicate better performance) in dB, whereas MOS-LQO values reflect quality (higher values indicate better performance), MVN – mean-variance normalisation

parison $A \rightarrow B$	CMOS
$CVAE \rightarrow NB$	0.90
$CVAE \rightarrow PCA$	0.13
$E \rightarrow SSAE + MVN$	0.10
$VAE \rightarrow WB$	-0.96

Subjective assessment results for the ABE systems with CVAE, SSAE + MVN and PCA DR techniques in terms of CMOS

Conclusions and future work

□ when used with standard regression ABE model, the latent, probabilistic NB features do not need any post-processing such as mean-variance normalisation

□ improvements in subjective and objective results are attributed purely to the probabilistic modelling of higher dimensional spectral coefficients using CVAE

□ future work should compare or combine CVAEs with other generative models such as

Selected References

[1] **P. Bachhav**, M. Todisco, and N. Evans, "Exploiting explicit memory inclusion for artificial

[2] P. Bachhav, M. Todisco, and N. Evans, "Artificial bandwidth extension with memory inclusion using semi-supervised stacked auto-encoders," in Proc. of INTERSPEECH, 2018

[3] K. Sohn, et. al., "Learning structured output representation using deep conditional

[4] D. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv, 2013

Our implementation and speech samples are available at : https://github.com/bachhavpramod/bandwidth extension http://audio.eurecom.fr/content/media

