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\Dimplementation details: 20ms frame duration; 10ms overlap; 1024-point FFT; squary

traditional telephony infrastructure is typically limited to a bandwidth of 0.3-3.4 kHz,
referred to as narrowband (NB)

wider bandwidths generally correspond to higher quality speech

artificial bandwidth extension (ABE) methods estimate missing highband (HB)
components at 3.4-8kHz; a regression problem

front-end explicit memory via neighboring speech frames augments complexity and
latency of a standard regression model

our own work addressed complexity issue using principal component analysis (PCA)
[1] and semi-supervised stacked auto-encoders (SSAESs) [2]

this work further investigates probabilistic graphical models (PGMs) for dimensionality
reduction (DR), to learn better performing representations tailored specifically to ABE

Conditional variational auto-encoder (CVAE)

PGMs such as VAEs and CVAEs are capable of modelling complex data distributions
they produce probabilistic latent representations and are used to generate new data

a CVAE is a deep generative model, pg(y,z|x) = pg(z)pg (v|x,z) where z~pg(z) and
y~po(¥|x,2)

in order to maximise the conditional likelihood, py(y|x) = [ pg(2)pg (V|x,z)dz, CVAES
introduce a posterior distribution g4 (z|y) as an approximation to the intractable true

posterior pg (z|y)

this formulation gives the variational lower bound on likelihood, that can be optimised
JOIntIy w.r.t 6 and ¢: L((p, 0; %, Y) — _DKL [qu (Z|Y) ” Po (Z)] + Eq¢(z|y) [lOg Po (YlX; Z)]

first term: acts as a regulariser; second term: is the negative reconstruction error

both encoder q4(z|y) and decoder pg(z|y) are modelled using deep neural networks

our initial investigations showed that vanilla VAE does not produce useful NB
representations for estimation of missing HB features; signifies the importance of
supervised learning

Contributions

the first application of CVAEs to DR for regression tasks such as ABE

the combination of CVAE with a probabilistic encoder in the form of an auxiliary neural
network which derives the conditioning variable

the joint optimisation to extract compact probabilistic NB latent representations for
estimation of missing HB components

a thorough comparison of CVAE performance to alternative DR techniques such as
PCA, SAE, SSAE

Experimental setup and results

1 databases: TIMIT database divided into training (4848 utterances) and validation
(192 utterances) sets. TSP speech database (1278 utterances) used as test set

root Hann window (for analysis and synthesis)
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Proposed CVAE architecture
as a graphical model, dashed
lines: variational inference;
solid lines: generative model

Proposed dimensionality reduction/feature extraction scheme using CVAE.
2
VLB: log Pey (Y|ZX) = L(Hy» ¢y» bx; Zx, Y) = —Dg, [CIqby (Zy|Y)” Pey(zy)] + Hy o f(ZX' Zy; HY)H /a
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d Mapping: GMM regression (using 128 components)

O NB features (x"B): 200-d log-power spectrum (LPS) coefficients; HB features (y
prediction (LP) coefficients including LP gain

HB)

d XCI\IOBHC_2 are 1000-d features obtained by concatenation of static features from 2 neighbouring
frames; xj, are 10-d features obtained after application of DR

: 10 linear

2 5 10 20 30
Dy (training phase) 0.96 0.21 3.3e-4 1.5e-4 9.7e-5
RE (training phase) 4.73 7.40 8.93 8.97 8.97
RE (testing phase) 11.40 9.85 8.93 8.97 8.97

Effect of weighing factor @ on Dy, and RE (||y — f(zx, zy; Hy)||2) during both training (or
reconstruction) and testing (or prediction) phases. Results shown for the validation dataset.
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DR method drms—Lsp (dB) dcosn (dB) MOS-LQO
PCA 6.95 1.43 3.21
PCA + MVN 7.35 1.45 3.14
SAE 12.45 2.96 1.95
SAE + MVN 7.54 1.50 3.03
VAE 8.64 1.67 2.75
VAE+ MVN 8.60 1.67 2.75
SSAE 10.50 2.11 2.26
SSAE + MVN 6.80 1.34 3.28
CVAE 6.59 1.31 3.34
CVAE + MVN 6.69 1.30 3.31

Comparison A — B CMOS
CVAE — NB 0.90
CVAE— PCA 0.13

CVAE— SSAE + MVN 0.10
CVAE — WB -0.96

Conclusions and future work

DR techniques in terms of CMOS

Objective assessment results. dgms—1.sp and dcosy are distance measures (lower values
indicate better performance) in dB, whereas MOS-LQO values reflect quality (higher
values indicate better performance), MVN — mean-variance normalisation

Subjective assessment results for the ABE systems with CVAE, SSAE + MVN and PCA

A the first application of DR using CVAEs for ABE

1 when used with standard regression ABE model, the latent, probabilistic NB features
do not need any post-processing such as mean-variance normalisation

O improvements in subjective and objective results are attributed purely to the
probabilistic modelling of higher dimensional spectral coefficients using CVAE

A future work should compare or combine CVAEs with other generative models such as
adversarial networks
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Our implementation and speech samples are available at :
https://github.com/bachhavpramod/bandwidth extension

http://audio.eurecom.fr/content/media
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