TOEPLITZ MATRIX COMPLETION FOR DIRECTION FINDING USING A MODIFIED NESTED LINEAR ARRAY Huiping Huang^{*}, Yang Miao[†], Yi Gong[†], and Bin Liao[§]

Technische Universität Darmstadt, Germany [†] Southern University of Science and Technology, China [§] Shenzhen University, China

Motivation

Background

- Recently, a modified nested linear array (MNLA) has been reported for a potential in increasing the degree-of-freedom.
- However, there exist some "holes" in its difference co-array, which results in missing "lags" and limited performance of direction-of-arrival (DOA) estimation.
- The interest of this paper is to tackle the problem caused by the missing lags in MNLA.

Our Approach	Con
 Construct a covariance matrix with Toeplitz 	• Th
Hermitian structure.	th
• Derive and solve a semidefinite program.	is

• Perform DOA estimation with the obtained Toeplitz covariance matrix.

Signal Model

The MNLA with total sensor number L = M + N, is depicted in Figure 1. The observation data using MNLA can be formed as

$$\mathbf{x}(t) = \mathbf{B}\mathbf{s}(t) + \mathbf{n}(t)$$

where **B** is the steering matrix, $\mathbf{s}(t)$ and $\mathbf{n}(t)$ denote the signal and noise, respectively. The data covariance matrix is defined as follows

$$\mathbf{R}_{x} \triangleq E\{\mathbf{x}(t)\mathbf{x}^{H}(t)\} = \mathbf{B}\mathbf{R}_{s}\mathbf{B}^{H} + \sigma_{n}\mathbf{I}.$$

- Remark 1: In the case of uniform linear array (ULA), the resulting covariance matrix is a Toeplitz Hermitian matrix.
- Remark 2: Here, the array configuration under consideration is MNLA rather than ULA. Thus, $\mathbf{R}_{\mathbf{y}}$ is not a Toeplitz matrix, and the DOA estimation performance would be limited whenever it is directly used base on traditional direction finding techniques.
- Remark 3: To this end, a Toeplitz matrix completion procedure is applied to transform the MNLA covariance matrix to a ULA counterpart before performing DOA estimation.

Figure 1: Illustration of configuration of MNLA.

- ntribution
- solved.

Methodology Progress of Toeplitz Matrix Completion • A four-step scheme: Step 1: Construct a Toeplitz Using the existing lags in \mathbf{R}_x , while the missing lags being filled with zeros matrix \mathbf{T}_0 . **Step 2:** he problem caused by $\min_{\mathbf{w}} \operatorname{rank}(\mathbf{T}) \quad \text{s.t. } \mathbf{T} = \mathbf{T}_0 + \sum_{l \in \mathcal{H}} \left(w_l \mathbf{I}_{(+)}^l + w_l^* \mathbf{I}_{(-)}^l \right)$ Formulate a low-rank ne missing lags in MNLA matrix recovery problem. • The performance of DOA estimation is improved. Step 3: $\min_{\mathbf{w}} \operatorname{trace}(\mathbf{T}) \quad \text{s.t.} \begin{cases} \mathbf{T} = \mathbf{T}_0 + \sum_{l \in \mathcal{H}} \left(w_l \mathbf{I}_{(+)}^l + w_l^* \mathbf{I}_{(-)}^l \right), \\ \mathbf{T} \succeq \mathbf{0} \end{cases}$ Reform the problem into a semidefinite program. Using CVX Step 4: Solve the problem. • An example: K = 1 signal and L = 5 sensors. The sensor locations are $\{0, 1, 3, 7, 12\}$. The corresponding covariance matrix is

 $\mathbf{R}_{x}^{(\mathrm{Ex})} = \mathbf{b}(\theta_{1})\sigma_{s}\mathbf{b}^{H}(\theta_{1}) + \sigma_{n}\mathbf{I}$ $\beta^{0}(heta_{1}) \ \beta^{-1}(heta_{1}) \ \beta^{-3}(heta_{1}) \ \beta^{-7}(heta_{1})$ $\beta^{1}(\theta_{1}) \quad \beta^{0}(\theta_{1}) \quad \beta^{-2}(\theta_{1}) \quad \beta^{-6}(\theta_{1})$ $=\sigma_{c}$ $\beta^{12}(\theta_1) \ \beta^{11}(\theta_1) \ \beta^9(\theta_1) \ \beta^5(\theta_1)$

It can be seen that some lags in $\mathbf{R}_{r}^{(\text{Ex})}$, including $\beta^{8}(\theta_{1})$, $\beta^{10}(\theta_{1})$, $\beta^{-8}(\theta_{1})$, and $\beta^{-10}(\theta_{1})$, are missing. The Toeplitz covariance matrix is constructed as $T_0^{(Ex)} = \text{toep}(c, r)$, where

> $\mathbf{c} = [\beta^0(\theta_1), \beta^1(\theta_1), \beta^2(\theta_1), \beta^3(\theta_1), \beta^4(\theta_1), \beta^5(\theta_1), \beta^5(\theta_$ $\beta^{6}(\theta_{1}), \beta^{7}(\theta_{1}), \mathbf{0}, \beta^{9}(\theta_{1}), \mathbf{0}, \beta^{11}(\theta_{1}), \beta^{12}(\theta_{1})]^{T}$ $\mathbf{r} = [\beta^{0}(\theta_{1}), \beta^{-1}(\theta_{1}), \beta^{-2}(\theta_{1}), \beta^{-3}(\theta_{1}), \beta^{-4}(\theta_{1}), \beta^{-5}(\theta_{1}), \beta^{-5}(\theta_{1}$ $\beta^{-6}(\theta_1), \beta^{-7}(\theta_1), 0, \beta^{-9}(\theta_1), 0, \beta^{-11}(\theta_1), \beta^{-12}(\theta_1)].$

DOA Estimation with Toeplitz Covariance Matrix

Once the Toeplitz covariance matrix is obtained, classical approaches like multiple signal classification (MUSIC) algorithm can be adopted for DOA estimation.

$$\begin{bmatrix} 1 & \beta^{-12}(\theta_1) \\ 1 & \beta^{-11}(\theta_1) \\ 1 & \beta^{-9}(\theta_1) \\ 0 & \beta^{-5}(\theta_1) \\ 0 & \beta^{0}(\theta_1) \end{bmatrix} + \sigma_n \mathbf{I}.$$

Results

Angle Resolution Comparison

- K = 2 signals, L = 5 sensors.
- Angle resolution comparison: SNR is set as -5 dB, 0 dB, and 5 dB (from row 1 to row 3), and the angle separation Δ_{θ} between two sources is set as 2° , 3° , 6° , and 9° (from column 1 to column 4).
- It is seen that, the proposed method outperforms the others in any experimental situations.

DOA RMSE Comparison

• K = 2 signals {0°, 10°}, L = 5 sensors, 500 snapshots, SNR ranges from -4 dB to 12 dB.

If you have any further questions, please do not hesitate to contact us via emailing to Huiping Huang (h.huang@spg.tudarmstadt.de).

TECHNISCHE UNIVERSITÄT DARMSTADT

Figure 2: Angle resolution comparison.

• K = 2 signals, L = 5 sensors, SNR is 10 dB, the number of snapshots varies from 10 to 500.

Figure 3: DOA RMSE comparison.