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Fig. 1. Attention-based Encoder-Decoder Model. It is an illustration
in the case of a one-layer decoder. If there are more layers, as in our
experiments, an updated context vector cn will also be fed into each
of the upper layers in the decoder at the time step n.

2. MODEL OVERVIEW

2.1. Attention-based Encoder-Decoder Model

The basic attention-based encoder-decoder model typically consists
of 3 modules as depicted in Fig 1: 1) an encoder transforming a se-
quence of input features x1:L into a high-level representation of the
features h1:T through a stack of convolution/recurrent layers, where
T  L due to possible frame down-sampling; 2) an attention mod-
ule summarizing the output of the encoder h1:T into a fixed length
context vector cn at each output step for n 2 [1, . . . , N ], which de-
termines parts of the sequence h1:T to be attended in order to predict
the output symbol yn; 3) a decoder module taking the context vec-
tor cn as input and predicting the next symbol yn given the history
of previous symbols y1:n�1. The entire model can be formulated as
follows:

h1:T = Encoder(x1:L) (1)
↵n,t = Attention(qn,ht) (2)

cn =
X

t

↵n,tht (3)

qn = Decoder(qn�1, [yn�1; cn�1]) (4)

yn = argmax
v

(Wfqn + bf ) (5)

Although our proposed methods do not limit itself in any partic-
ular attention mechanism, we choose the Bahdanau Attention [19]
as the attention function for our experiments. So Eqn. (2) takes the
form of:

!n,t = v> tanh(Wqqn +Whht + b) (6)
↵n,t = softmax(!n,t) (7)

2.2. Multi-source Attention Model

Our first approach is based on the intuition that the attention mech-
anism should consider both the speaker information and the decoder
state – when computing the attention weights, in addition to condi-
tioning on the decoder state, the speaker information extracted from
the input frames is also utilized. In our scenario, the device-directed
speech and the anchor word are uttered by the same speaker, while
the interfering background speech is from a different speaker. There-
fore, the attention mechanism can be augmented by placing more
attention probability mass on frames that are more similar to the an-
chor word in terms of speaker characteristics.

Formally speaking, besides our previous notations, the an-
chor word segment is denoted as w1:L0 . We add another encoder
S-Encoder to be applied on both w1:L0 and x1:L to generate a
fixed-length vector w̃ and a variable length sequence u1:T respec-
tively:

w̃ = Pooling(S-Encoder(w1:L0)) (8)
u1:T = S-Encoder(x1:L) (9)

As shown above, S-Encoder extracts speaker characteristics from
the acoustic features. In our experiments, the pooling function is im-
plemented as Max-pooling across all output frames if S-Encoder is
a convolutional network, or picking the hidden state of the last frame
if S-Encoder is a recurrent network. Rather than being appended to
acoustic feature vector and fed into the decoder1 as proposed in [10],
w̃ is directly involved in computing the attention weights. Specifi-
cally, Eqn. (7) and Eqn. (3) are replaced by:

�t = Similarity(ut, w̃) (10)

↵anchor aware
n,t = softmax(!n,t + g · �t) (11)

cn =
X

t

↵anchor aware
n,t ht (12)

where g is a trainable scalar used to automatically adjust the relative
contribution from the speaker acoustic information. Similarity(·, ·)
is implemented as dot-product in our experiments. As a result, the at-
tention weights are essentially computed from two different sources:
the ASR decoding state, and the confidence of decision on whether
each frame belongs to the device-directed speech. We call this model
Multi-source Attention to reflect the way the attention weights are
computed.

2.3. Mask-based Model

The Multi-source Attention model jointly considers speaker char-
acteristic and ASR decoder state when calculating the attention
weights. However, since the attention weights are normalized with
a softmax function, whether each frame needs to be ignored is not
independently decided, which reduces the modeling flexibility in
frame selection.

As the second approach we propose the Mask-based model,
where a frame-wise mask on top of the encoder2 is estimated by
leveraging the speaker acoustic information contained in the anchor
word and the actual recognition utterance. The attention mechanism
is then performed on the masked feature representation. Compared
with the Multi-source Attention model, attention in the Mask-based
model only focuses on remaining frames after masking, and for each
frame it is independently decided whether to be masked out based
on their acoustic similarity. Formally, Eqn. (6) and Eqn. (3) are
modified as:

�t = sigmoid(g · Similarity(ut, w̃)) (13)

hmasked
t = �tht (14)
!n,t = v> tanh(Wqqn +Whhmasked

t + b) (15)

cn =
X

t

↵n,th
masked
t (16)

where Similarity(·, ·) in Eqn. (13) is dot-product as well.

1We tried that in our preliminary experiments but it did not perform well.
2Here “frame-wise” actually means frame-wise after down-sampling, in

accordance with the frame down-sampling in the encoder network (see Sec-
tion 4.1 for details).
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arization [5], end-pointing [6] and manual transcription [7]. While VAD systems can be based on
engineered acoustic features [6, 8, 9, 10, 11], such as audio energy [12], pitch [13], zero-crossing
rate [14, 15], and cortical features [16], superior performance is typically achieved with DNN-based
approaches [17, 18, 19, 20].

In this paper we investigate speech detection in the context of voice-controlled far-field devices (e.g.
Amazon Echo, Google Home etc). While conventional speech detection aims to distinguish between
speech and non-speech (silence and background noise), our goal is to distinguish desired speech
from background speech and non-speech regions. Consider the following interaction: “[speaker 1:]
Alexa [speaker 2:] stop [speaker 1:] play music”. In this example, the device needs to respond
to segment 3, since it is uttered by wake word speaker (speaker 1), and ignore other portions of the
signal. We refer to this task as anchored speech detection (ASD) [20], where the aim is to detect
speech from the wake word speaker.

In this work, we propose a speaker verification (SV) based frame work for ASD. The task of speaker
verification [21, 22] is to verify whether the given two speech segments belong to the same speaker
or not. Recent deep neural network based SV models were shown to produce systems with accura-
cies close to 95 % [23, 21]. The common theme of the systems is to extract fixed-length DNN based
embeddings from reference speech and test speech segments, and compare these embeddings. Moti-
vated by the success of these models, we propose a new ASD framework which involves comparing
DNN embeddings from the wake word segment and intent segments.

The rest of the paper is organized as follows: In section 2, the concept of siamese-network based SV
framework applied to ASD is introduced in detail. Experimental results and analysis are shows in
Section 3. Section 4 draws conclusions and future work along the proposed approach.

2 A siamese network based speaker verification framework for anchored
speech detection

This section describes the anchored speech detection framework based on the idea of speaker verifi-
cation. The network architecture is described in Figure 1. We have two components in the network.
The first component is the speaker embedding extraction network, where a fixed-length embedding
is learned for both the anchor word segment and test segments. The second component is the scoring
component, where we obtain the score for each pair of the speaker embeddings from the previous
component using a cosine scoring as in a siamese network. The score is then converted into a final
probability using a simple logistic regression. All networks in this framework are jointly trained
using stochastic gradient descent (SGD).

Figure 1: A siamese network based speaker verification framework for anchored speech detection
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Problem Definition
Anchored Speech Recognition
• To distinguish target speaker from interfering speakers and background

speech/noises and only recognize speech from the target speaker

• Interfering speech: A challenging problem in far-field Automatic Speech
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• A multi-task training scheme for Mask based model is also proposed
• 15% WER reduction on test data with interfering background speech;

while with only a minor degradation of 1.5% on clean speech.

Experiments
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– Training:  1200-hour manual transcribed English Amazon Echo live 
data with same wake word. Mostly clean condition utterances
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• Hard set (5.4k words) – live data containing interfering speech
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Fig. 1. Attention-based Encoder-Decoder Model. It is an illustration
in the case of a one-layer decoder. If there are more layers, as in our
experiments, an updated context vector cn will also be fed into each
of the upper layers in the decoder at the time step n.

2. MODEL OVERVIEW

2.1. Attention-based Encoder-Decoder Model

The basic attention-based encoder-decoder model typically consists
of 3 modules as depicted in Fig 1: 1) an encoder transforming a se-
quence of input features x1:L into a high-level representation of the
features h1:T through a stack of convolution/recurrent layers, where
T  L due to possible frame down-sampling; 2) an attention mod-
ule summarizing the output of the encoder h1:T into a fixed length
context vector cn at each output step for n 2 [1, . . . , N ], which de-
termines parts of the sequence h1:T to be attended in order to predict
the output symbol yn; 3) a decoder module taking the context vec-
tor cn as input and predicting the next symbol yn given the history
of previous symbols y1:n�1. The entire model can be formulated as
follows:

h1:T = Encoder(x1:L) (1)
↵n,t = Attention(qn,ht) (2)

cn =
X

t

↵n,tht (3)

qn = Decoder(qn�1, [yn�1; cn�1]) (4)

yn = argmax
v

(Wfqn + bf ) (5)

Although our proposed methods do not limit itself in any partic-
ular attention mechanism, we choose the Bahdanau Attention [19]
as the attention function for our experiments. So Eqn. (2) takes the
form of:

!n,t = v> tanh(Wqqn +Whht + b) (6)
↵n,t = softmax(!n,t) (7)

2.2. Multi-source Attention Model

Our first approach is based on the intuition that the attention mech-
anism should consider both the speaker information and the decoder
state – when computing the attention weights, in addition to condi-
tioning on the decoder state, the speaker information extracted from
the input frames is also utilized. In our scenario, the device-directed
speech and the anchor word are uttered by the same speaker, while
the interfering background speech is from a different speaker. There-
fore, the attention mechanism can be augmented by placing more
attention probability mass on frames that are more similar to the an-
chor word in terms of speaker characteristics.

Formally speaking, besides our previous notations, the an-
chor word segment is denoted as w1:L0 . We add another encoder
S-Encoder to be applied on both w1:L0 and x1:L to generate a
fixed-length vector w̃ and a variable length sequence u1:T respec-
tively:

w̃ = Pooling(S-Encoder(w1:L0)) (8)
u1:T = S-Encoder(x1:L) (9)

As shown above, S-Encoder extracts speaker characteristics from
the acoustic features. In our experiments, the pooling function is im-
plemented as Max-pooling across all output frames if S-Encoder is
a convolutional network, or picking the hidden state of the last frame
if S-Encoder is a recurrent network. Rather than being appended to
acoustic feature vector and fed into the decoder1 as proposed in [10],
w̃ is directly involved in computing the attention weights. Specifi-
cally, Eqn. (7) and Eqn. (3) are replaced by:

�t = Similarity(ut, w̃) (10)

↵anchor aware
n,t = softmax(!n,t + g · �t) (11)

cn =
X

t

↵anchor aware
n,t ht (12)

where g is a trainable scalar used to automatically adjust the relative
contribution from the speaker acoustic information. Similarity(·, ·)
is implemented as dot-product in our experiments. As a result, the at-
tention weights are essentially computed from two different sources:
the ASR decoding state, and the confidence of decision on whether
each frame belongs to the device-directed speech. We call this model
Multi-source Attention to reflect the way the attention weights are
computed.

2.3. Mask-based Model

The Multi-source Attention model jointly considers speaker char-
acteristic and ASR decoder state when calculating the attention
weights. However, since the attention weights are normalized with
a softmax function, whether each frame needs to be ignored is not
independently decided, which reduces the modeling flexibility in
frame selection.

As the second approach we propose the Mask-based model,
where a frame-wise mask on top of the encoder2 is estimated by
leveraging the speaker acoustic information contained in the anchor
word and the actual recognition utterance. The attention mechanism
is then performed on the masked feature representation. Compared
with the Multi-source Attention model, attention in the Mask-based
model only focuses on remaining frames after masking, and for each
frame it is independently decided whether to be masked out based
on their acoustic similarity. Formally, Eqn. (6) and Eqn. (3) are
modified as:

�t = sigmoid(g · Similarity(ut, w̃)) (13)

hmasked
t = �tht (14)
!n,t = v> tanh(Wqqn +Whhmasked

t + b) (15)

cn =
X

t

↵n,th
masked
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where Similarity(·, ·) in Eqn. (13) is dot-product as well.

1We tried that in our preliminary experiments but it did not perform well.
2Here “frame-wise” actually means frame-wise after down-sampling, in

accordance with the frame down-sampling in the encoder network (see Sec-
tion 4.1 for details).

The relative WER reduction (WERR) of Multi-source Attention on
the “hard” set is 2.8% and it is mostly due to a reduction in insertion
errors. We also observe a slight WER degradation of 1.5% relative
on the “normal” set. It implies that the proposed model is more
robust to interfering background speech.

Next, we further validate the effectiveness of the Multi-source
Attention model by showing how synthetic training data has different
impact on it and the baseline model respectively. Synthetic training
data is prepared such that 50% of the utterances in the training set are
kept unchanged, 44% are processed with Synthetic Method 1, and
6% are processed with Synthetic Method 2. The ratio is tuned on the
development set. This new training data is referred as “augmented”
in all result tables. Table 2 exhibits the results. For the baseline
model, the performance degrades drastically when trained on aug-
mented data: the deletion errors on both of the “normal” and “hard”
test sets get much higher. This is expected since without the anchor
word the model has no extra acoustic information of which part of
the utterance is desired, so that it tends to ignore frames regardless of
whether they are actually from device-directed speech. On the con-
trary, for the Multi-source Attention model the WERR (augmented
vs. device-directly-only) on the “hard” set is 12.5%, and WER on
the “normal” set does not get worse. Moreover, the insertion errors
on both test sets get reduced while the deletion errors increase much
less than those in the case of the baseline model, indicating that by
incorporating the anchor word information the proposed model ef-
fectively improves the ability of focusing on device-directed speech
and ignoring others. This series of experiments also reveals signifi-
cant benefits from using the synthetic data with the proposed model.
In total, the combination of the Multi-source Attention model and
augmented training data achieves 14.9% WERR on the “hard” set,
with only 1.5% degradation on the “normal” set.

Table 2. Augmented vs. Device-directed-only training data. Results
with “Device-directed-only” training set are from Table 1 for clearer
comparisons.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline

Device-
directed-only

normal 1.000 0.715 0.108 0.177 —

hard 3.354 1.762 1.123 0.469 —

Augmented normal 3.215 1.223 0.038 1.954 -221.5

hard 4.208 1.777 0.246 2.185 -30.9

Mul-src.
Attn.

Device-
directed-only

normal 1.015 0.731 0.115 0.169 -1.5

hard 3.262 1.746 1.062 0.454 +2.8

Augmented normal 1.015 0.700 0.108 0.207 -1.5

hard 2.854 1.569 0.723 0.562 +14.9

4.3. Mask-based Model

In the Mask-based model experiments, 3 convolution and 1 Bi-
directional LSTM layers are used as S-Encoder, as we observed
that it empirically performs better than convolution-only layers.
Due to the importance of using the augmented data for training our
previous model, the same synthetic approach is directly applied to
train the Mask-based model. Also, as we mentioned in Sec 3.2,
multi-task training can be conducted since we know the gold mask
for each synthesized utterance. Given the imbalanced mask labels,

25.0% for the “hard” set, then the normalized values would be 1.000 and
5.000 respectively.

i.e., frames with label “1” (corresponding to those from the original
utterance) constitute the majority compared with frames with label
“0” (corresponding to those from another random utterance), we use
weighted cross entropy loss for the auxiliary mask learning task,
where the weight on frames with label “1” is 0.6 and on those with
label “0” is 1.0, to counteract the label imbalance.

We first set the multi-task loss weighting factor � = 1.0 so that
only the mask learning is performed. It turns out that around 70%
of frames with label “0” and 98% with label “1” are recalled on a
held-out set synthesized the same way as the training data, which
demonstrates the effectiveness of estimating masks from the syn-
thetic data.

Then we perform ASR using the Mask-based model with and
without mask supervision respectively, and the results are presented
in Table 3. WERRs are all relative to the baseline model trained on
device-directed-only data. For the Mask-based model without mask
supervision, it achieves 3.9% WERR on the “hard” set while has
a degradation of 34.8% on the “normal” set. On the other hand,
with mask supervision (� = 0.1) corresponding to the multi-task
training, it yields 12.6% WERR on the “hard” set while only 3.0%
worse on the “normal” set. The performance gap between them can
be attributed to the ability of mask prediction: while with mask su-
pervision the recall is still around 70% (for frames labeled as “0”)
and 98% (for frames labeled as “1”) on the held-out set, it is only
48% and 50% respectively without mask supervision.

Note that even with multi-task training, the WER performance
of the Mask-based model is still slightly behind the Multi-source
Attention model, mainly due to the insertion error. Our conjecture
is, the mask prediction is only done within the encoder, which may
lose semantic information from the decoder that is potentially useful
for discriminating device-directed speech from others.

Table 3. Mask-based Model: with and without mask supervision.
Model Training Set Test Set WER sub ins del WERR(%)

w/o
Supervision Augmented normal 1.348 0.725 0.096 0.527 -34.8

hard 3.223 1.508 0.628 1.087 +3.9

w/
Supervision Augmented normal 1.030 0.715 0.115 0.200 -3.0

hard 2.931 1.586 0.809 0.536 +12.6

5. CONCLUSIONS AND FUTURE WORK

In this paper we propose two approaches for end-to-end anchored
speech recognition, namely Multi-source Attention and the Mask-

based model. We also propose two ways to generate synthetic data
for end-to-end model training to improve the performance. Given the
synthetic training data, a multi-task training scheme for the Mask-
based model is also proposed. With the information extracted from
the anchor word, both of these methods show their ability in picking
up device-directed part of speech and ignore other parts. This results
in large WER improvement of 15% relative on the test set with inter-
fering background speech, with only a minor degradation of 1.5% on
clean speech. Obviously the mismatch still exists between the train-
ing and test data. Future work would include finding a better way
to generate synthetic data with more similar condition to the “hard”
test set, and taking decoder state into consideration when estimating
the mask. The other direction is to utilize anchor word information
in contextual speech recognition [29].
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3. SYNTHETIC DATA AND MULTI-TASK TRAINING

3.1. Synthetic Data

A problem we encountered in our task is: there is very little training
data that has the same condition as the test case. Some utterances in
the test set contain speech from two or more speakers (denoted as the
“speaker change” case), and some of the other utterances only con-
tain background speech (denoted as the “no desired speaker” case).
In contrast, most of the training data does not have interfering or
background speech, making the model unable to learn to ignore.

In order to simulate the condition of the test case, we generate
two types of synthetic data for training:

• Synthetic Method 1: for an utterance, a random segment3

from another utterance in the dataset is inserted at a random
position after the wake-up word part within this utterance,
while its transcript is unchanged.

• Synthetic Method 2: the entire utterance, excluding the wake-
up word part, is replaced by another utterance, and its tran-
script is considered as empty.

Fig. 2 illustrates the synthesizing process. These two types of syn-
thetic data simulate the “speaker change” case and the “no desired
speaker” case respectively. The synthetic and device-directed data
are mixed together to form our training data. The mixing proportion
is determined from experiments.

<w> what’s the weather <w> play a song from frozen

<w> what’s the weather

<w> what’s the weather <w> play a song from frozen

<w>  <SPACE>

Fig. 2. Two types of synthetic data: Synthetic Method 1 (top) and
2 (bottom). The symbol hWi represents the wake-up word, and
hSPACEi represents empty transcripts.

3.2. Multi-task Training for Mask-based Model

For the generated synthetic data, we know which frames come from
the original utterance and which are not, i.e., we have the gold mask
for each synthetic utterance, where the frames from the original ut-
terance are labeled with “1”, and the other frames are labeled with
“0”. Using this gold mask as an auxiliary target, we train the Mask-
based model in a multi-task way, where the overall loss is defined as
a linear interpolation of the normal ASR cross-entropy loss and the
cross-entropy-based mask loss: (1� �)LASR + �Lmask.

The gold mask provides a supervision signal to explicitly guide
S-Encoder to extract acoustic features that can better distinguish
the inserted frames from those in the original utterance. As will be
shown in our experiments, with the multi-task training the predicted
mask is more accurate in selecting desired frames for the decoder.

3The frame length of a segment is uniformly sampled within the range
[50,150] in our experiments. It is possible that the randomly selected segment
is purely non-speech or even silence.

4. EXPERIMENTS

4.1. Experimental Settings

We conduct our experiments on training data of 1200-hour live data
in English collected from the Amazon Echo. Each utterance is hand-
transcribed and begins with the same wake-up word whose align-
ment with time is provided by end-point detection [22, 23, 24, 25].
As we have mentioned, while the training data is relatively clean
and usually only contains device-directed speech, the test data is
more challenging and under mismatched conditions with training
data: it may be noisy, may contain background speech4, or may
even contain no device-directed speech at all. In order to evaluate
the performance on both the matched and mismatched cases, two
test sets are formed: a “normal set” (25k words in transcripts) where
utterances have a similar condition as those in the training set, and
a “hard set” (5.4k words in transcripts) containing the challenging
utterances with interfering background speech. Note that both of
the two test sets are real data without any synthesis. We also pre-
pare a development set (“normal”+“hard”) with a similar size as
the test sets for hyper-parameter tuning. For all the experiments,
64-dimensional log filterbank energy (LFBE) features are extracted
every 10ms with a window size of 25ms. The end-to-end systems
are grapheme-based and the vocabulary is determined by threshold-
ing on the minimum number of character counts from the training
transcripts and its size is 36. Our implementation is based on the
open-sourced toolkit OPENSEQ2SEQ [26].

Our baseline end-to-end model does not consider anchor words.
Its encoder consists of three convolution layers resulting in 2x frame
down-sampling and 8x frequency down-sampling, followed by 3 Bi-
directional LSTM [27] layers with 320 hidden units. Its decoder con-
sists of 3 unidirectional-LSTM layers with 320 hidden units. The at-
tention function is Bahdanau Attention [19]. The cross-entropy loss
on characters is optimized using Adam [28], with an initial learning
rate 0.0008 which is then adjusted by exponential decay. A beam
search with beam size 15 is adopted for decoding. The above setting
is also used in our proposed models.

4.2. Multi-source Attention Model vs. Baseline
S-Encoder consists of three convolution layers with the same archi-
tecture as that in the baseline’s encoder.

First of all, we compare Multi-source Attention Model and the
baseline trained on the device-directed-only data, i.e., without any
synthetic data. The results are shown in Table 1.

Table 1. Multi-source Attention Model vs. Baseline with device-
directed-only training data. The WER, substitution, insertion and
deletion values are all normalized by the baseline WER on the “nor-
mal” set6. The normalization applies to all the tables throughout this
paper in the same way.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline Device-
directed-only

normal 1.000 0.715 0.108 0.177 —

hard 3.354 1.762 1.123 0.469 —

Mul-src.
Attn.

Device-
directed-only

normal 1.015 0.731 0.115 0.169 -1.5

hard 3.262 1.746 1.062 0.454 +2.8

4background speech includes: 1) interfering speech from an actual non-
device-directed speaker; and 2) multi-media speech, meaning that a televi-
sion, radio, or other media device is playing back speech in the background.

6For example, if WER for the baseline is 5.0% for the “normal” set, and

Interfering Speech

Interfering Speech

Anchored word

Target speech

h1 h2 h3 hT

Attention

cn−1 qn−1

yn−1

Decoder

qn

yn

Encoder

x1:L

yn−2 yn−1

Fig. 1. Attention-based Encoder-Decoder Model. It is an illustration
in the case of a one-layer decoder. If there are more layers, as in our
experiments, an updated context vector cn will also be fed into each
of the upper layers in the decoder at the time step n.

2. MODEL OVERVIEW

2.1. Attention-based Encoder-Decoder Model

The basic attention-based encoder-decoder model typically consists
of 3 modules as depicted in Fig 1: 1) an encoder transforming a se-
quence of input features x1:L into a high-level representation of the
features h1:T through a stack of convolution/recurrent layers, where
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speech and the anchor word are uttered by the same speaker, while
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attention probability mass on frames that are more similar to the an-
chor word in terms of speaker characteristics.

Formally speaking, besides our previous notations, the an-
chor word segment is denoted as w1:L0 . We add another encoder
S-Encoder to be applied on both w1:L0 and x1:L to generate a
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is implemented as dot-product in our experiments. As a result, the at-
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the ASR decoding state, and the confidence of decision on whether
each frame belongs to the device-directed speech. We call this model
Multi-source Attention to reflect the way the attention weights are
computed.
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acteristic and ASR decoder state when calculating the attention
weights. However, since the attention weights are normalized with
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As the second approach we propose the Mask-based model,
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where Similarity(·, ·) in Eqn. (13) is dot-product as well.

1We tried that in our preliminary experiments but it did not perform well.
2Here “frame-wise” actually means frame-wise after down-sampling, in

accordance with the frame down-sampling in the encoder network (see Sec-
tion 4.1 for details).
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the interfering background speech is from a different speaker. There-
fore, the attention mechanism can be augmented by placing more
attention probability mass on frames that are more similar to the an-
chor word in terms of speaker characteristics.

Formally speaking, besides our previous notations, the an-
chor word segment is denoted as w1:L0 . We add another encoder
S-Encoder to be applied on both w1:L0 and x1:L to generate a
fixed-length vector w̃ and a variable length sequence u1:T respec-
tively:

w̃ = Pooling(S-Encoder(w1:L0)) (8)
u1:T = S-Encoder(x1:L) (9)

As shown above, S-Encoder extracts speaker characteristics from
the acoustic features. In our experiments, the pooling function is im-
plemented as Max-pooling across all output frames if S-Encoder is
a convolutional network, or picking the hidden state of the last frame
if S-Encoder is a recurrent network. Rather than being appended to
acoustic feature vector and fed into the decoder1 as proposed in [10],
w̃ is directly involved in computing the attention weights. Specifi-
cally, Eqn. (7) and Eqn. (3) are replaced by:

�t = Similarity(ut, w̃) (10)

↵anchor aware
n,t = softmax(!n,t + g · �t) (11)

cn =
X

t

↵anchor aware
n,t ht (12)

where g is a trainable scalar used to automatically adjust the relative
contribution from the speaker acoustic information. Similarity(·, ·)
is implemented as dot-product in our experiments. As a result, the at-
tention weights are essentially computed from two different sources:
the ASR decoding state, and the confidence of decision on whether
each frame belongs to the device-directed speech. We call this model
Multi-source Attention to reflect the way the attention weights are
computed.

2.3. Mask-based Model

The Multi-source Attention model jointly considers speaker char-
acteristic and ASR decoder state when calculating the attention
weights. However, since the attention weights are normalized with
a softmax function, whether each frame needs to be ignored is not
independently decided, which reduces the modeling flexibility in
frame selection.

As the second approach we propose the Mask-based model,
where a frame-wise mask on top of the encoder2 is estimated by
leveraging the speaker acoustic information contained in the anchor
word and the actual recognition utterance. The attention mechanism
is then performed on the masked feature representation. Compared
with the Multi-source Attention model, attention in the Mask-based
model only focuses on remaining frames after masking, and for each
frame it is independently decided whether to be masked out based
on their acoustic similarity. Formally, Eqn. (6) and Eqn. (3) are
modified as:

�t = sigmoid(g · Similarity(ut, w̃)) (13)

hmasked
t = �tht (14)
!n,t = v> tanh(Wqqn +Whhmasked

t + b) (15)

cn =
X

t

↵n,th
masked
t (16)

where Similarity(·, ·) in Eqn. (13) is dot-product as well.

1We tried that in our preliminary experiments but it did not perform well.
2Here “frame-wise” actually means frame-wise after down-sampling, in

accordance with the frame down-sampling in the encoder network (see Sec-
tion 4.1 for details).
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The relative WER reduction (WERR) of Multi-source Attention on
the “hard” set is 2.8% and it is mostly due to a reduction in insertion
errors. We also observe a slight WER degradation of 1.5% relative
on the “normal” set. It implies that the proposed model is more
robust to interfering background speech.

Next, we further validate the effectiveness of the Multi-source
Attention model by showing how synthetic training data has different
impact on it and the baseline model respectively. Synthetic training
data is prepared such that 50% of the utterances in the training set are
kept unchanged, 44% are processed with Synthetic Method 1, and
6% are processed with Synthetic Method 2. The ratio is tuned on the
development set. This new training data is referred as “augmented”
in all result tables. Table 2 exhibits the results. For the baseline
model, the performance degrades drastically when trained on aug-
mented data: the deletion errors on both of the “normal” and “hard”
test sets get much higher. This is expected since without the anchor
word the model has no extra acoustic information of which part of
the utterance is desired, so that it tends to ignore frames regardless of
whether they are actually from device-directed speech. On the con-
trary, for the Multi-source Attention model the WERR (augmented
vs. device-directly-only) on the “hard” set is 12.5%, and WER on
the “normal” set does not get worse. Moreover, the insertion errors
on both test sets get reduced while the deletion errors increase much
less than those in the case of the baseline model, indicating that by
incorporating the anchor word information the proposed model ef-
fectively improves the ability of focusing on device-directed speech
and ignoring others. This series of experiments also reveals signifi-
cant benefits from using the synthetic data with the proposed model.
In total, the combination of the Multi-source Attention model and
augmented training data achieves 14.9% WERR on the “hard” set,
with only 1.5% degradation on the “normal” set.

Table 2. Augmented vs. Device-directed-only training data. Results
with “Device-directed-only” training set are from Table 1 for clearer
comparisons.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline

Device-
directed-only

normal 1.000 0.715 0.108 0.177 —

hard 3.354 1.762 1.123 0.469 —

Augmented normal 3.215 1.223 0.038 1.954 -221.5

hard 4.208 1.777 0.246 2.185 -30.9

Mul-src.
Attn.

Device-
directed-only

normal 1.015 0.731 0.115 0.169 -1.5

hard 3.262 1.746 1.062 0.454 +2.8

Augmented normal 1.015 0.700 0.108 0.207 -1.5

hard 2.854 1.569 0.723 0.562 +14.9

4.3. Mask-based Model

In the Mask-based model experiments, 3 convolution and 1 Bi-
directional LSTM layers are used as S-Encoder, as we observed
that it empirically performs better than convolution-only layers.
Due to the importance of using the augmented data for training our
previous model, the same synthetic approach is directly applied to
train the Mask-based model. Also, as we mentioned in Sec 3.2,
multi-task training can be conducted since we know the gold mask
for each synthesized utterance. Given the imbalanced mask labels,

25.0% for the “hard” set, then the normalized values would be 1.000 and
5.000 respectively.

i.e., frames with label “1” (corresponding to those from the original
utterance) constitute the majority compared with frames with label
“0” (corresponding to those from another random utterance), we use
weighted cross entropy loss for the auxiliary mask learning task,
where the weight on frames with label “1” is 0.6 and on those with
label “0” is 1.0, to counteract the label imbalance.

We first set the multi-task loss weighting factor � = 1.0 so that
only the mask learning is performed. It turns out that around 70%
of frames with label “0” and 98% with label “1” are recalled on a
held-out set synthesized the same way as the training data, which
demonstrates the effectiveness of estimating masks from the syn-
thetic data.

Then we perform ASR using the Mask-based model with and
without mask supervision respectively, and the results are presented
in Table 3. WERRs are all relative to the baseline model trained on
device-directed-only data. For the Mask-based model without mask
supervision, it achieves 3.9% WERR on the “hard” set while has
a degradation of 34.8% on the “normal” set. On the other hand,
with mask supervision (� = 0.1) corresponding to the multi-task
training, it yields 12.6% WERR on the “hard” set while only 3.0%
worse on the “normal” set. The performance gap between them can
be attributed to the ability of mask prediction: while with mask su-
pervision the recall is still around 70% (for frames labeled as “0”)
and 98% (for frames labeled as “1”) on the held-out set, it is only
48% and 50% respectively without mask supervision.

Note that even with multi-task training, the WER performance
of the Mask-based model is still slightly behind the Multi-source
Attention model, mainly due to the insertion error. Our conjecture
is, the mask prediction is only done within the encoder, which may
lose semantic information from the decoder that is potentially useful
for discriminating device-directed speech from others.

Table 3. Mask-based Model: with and without mask supervision.
Model Training Set Test Set WER sub ins del WERR(%)

w/o
Supervision Augmented normal 1.348 0.725 0.096 0.527 -34.8

hard 3.223 1.508 0.628 1.087 +3.9

w/
Supervision Augmented normal 1.030 0.715 0.115 0.200 -3.0

hard 2.931 1.586 0.809 0.536 +12.6

5. CONCLUSIONS AND FUTURE WORK

In this paper we propose two approaches for end-to-end anchored
speech recognition, namely Multi-source Attention and the Mask-

based model. We also propose two ways to generate synthetic data
for end-to-end model training to improve the performance. Given the
synthetic training data, a multi-task training scheme for the Mask-
based model is also proposed. With the information extracted from
the anchor word, both of these methods show their ability in picking
up device-directed part of speech and ignore other parts. This results
in large WER improvement of 15% relative on the test set with inter-
fering background speech, with only a minor degradation of 1.5% on
clean speech. Obviously the mismatch still exists between the train-
ing and test data. Future work would include finding a better way
to generate synthetic data with more similar condition to the “hard”
test set, and taking decoder state into consideration when estimating
the mask. The other direction is to utilize anchor word information
in contextual speech recognition [29].
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