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Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-Encoders

AIM 
  
Gravitational waves received by LIGO detectors are inevitably 
contaminated by non-Gaussian and non-stationary noise. The 
scale of the noise is usually far greater than one for the 
gravitational waves, as shown in the figure below. 
Conventional denoising algorithms fail to handle this extremely 
noisy case. As a result, we want to take advantage of deep 
learning technology, designing a good model to remove noise 
and return clean waveforms with high quality. Meanwhile, we 
also want to make sure when there is no signal in the input, the 
model is able to prevent false positive.

INTRODUCTION 
  
Denoising of time domain data is a crucial task for many 
applications such as communication, translation, virtual 
assistants etc. For this task, a combination of a recurrent neural 
net (RNNs) with a Denoising Auto-Encoder (DAEs) has shown 
promising results. However, this combined model is challenged 
when operating with low signal-to-noise ratio (SNR) data 
embedded in non-Gaussian and non-stationary noise. To 
address this issue, we design a novel model, referred to as 
Enhanced Deep Recurrent Denoising Auto-Encoder 
(EDRDAE), that incorporates a signal amplifier layer, and 
applies curriculum learning by first denoising high SNR 
signals, before gradually decreasing the SNR until the signals 
become noise dominated. We showcase the performance of 
EDRDAE using time-series data that describes gravitational 
waves embedded in very noisy backgrounds.  In addition, we 
show that EDRDAE can accurately denoise signals whose 
topology is significantly more complex than those used for 
training, demonstrating that our model generalizes to new 
classes of gravitational waves that are beyond the scope of 
established denoising algorithms. 

Notice: Here we use a different SNR, peak SNR, which is 
defined as:

METHOD 

The architecture of EDRDAE empowers this new deep neural 
net to better denoise time series embedded in non-Gaussian and 
non-stationary noise datasets. There are three major structural 
highlights compared to DRDAE: 

(1). We apply bidirectional LSTMs rather than conventional 
one-way LSTMs, since the bidirectional structure will pass the 
information of the input data through time in two directions, 
forward and backward. Especially for multiple time step inputs, 
where we use several neighboring time points to predict the 
central time step, we found bidirectional layers to help pass 
information from neighboring time steps (before and after the 
central time step) to adjacent layers. Intuitively, this boosts 
denoising performance significantly. 

(2). The introduction of the Signal Amplifier (SA). It is 
beneficial in denoising signals when the amplitude of the signal 
is lower than that of the background noise. This new structure 
is inspired by speech data, which is nearly symmetric 
concerning the mean-value axis (a horizontal line). SA right 
before the output layer assists the network in learning more 
evident patterns and magnifying the reconstructed values to 
reach the true values of the clean references.  

(3). We apply a cross-layer connection, which is in spirit similar 
to the connection in It passes through both forward and 
backward cells in bidirectional layers. The cell states from the 
output time step of the encoder are passed to the cell states of 
the first time step of the decoder layer, using blue arrows. 
Empirically, we observe this structure helps reconstruction in 
noisy environments and achieves higher accuracy compared to 
models that have different cell states for different layers. 

EXPERIMENT 

Dataset Preparation 
  
We designed experiments to illustrate the performance of 
DRDAE (an old comparing model) and EDRDAE on GW 
datasets. We use simulated GWs describe binary black hole 
(BBH) mergers, generated with the waveform model  available 
in LIGO‘s Algorithm Library. We consider BBH systems with 
mass-ratios q 10, and with total mass between 5 and 75 in the 
unit of solar mass. The waveforms are generated with a 
sampling rate of 8192 Hz. We consider the late inspiral, merger 
and ring-down evolution of BBHs, since it is representative of 
the BBH GW signals reported by ground-based GW. 

The SNR of astrophysical GW sources in the LIGO detectors 
cannot be known prior to detection. Therefore, we normalize 
our data to have variance 1.0. In addition, we also add random 
shifts to the training data, to make the model more resilient to 
variations in the location of the signal. For every input signal, 
we randomly generate an integer between 0 and 200 as shift 
length for left and right shifts. The length is 0% to 15% 
proportional to the total signal length. Zero padding is 
performed when necessary.  

Decreasing SNR (Curriculum Learning) 

Different from the conventional image and audio denoising 
setups for which the noise level is typically too low to obscure 
image background or audio utterances, the data we focus on, 
however, are always embedded within extreme noise. For 
example, raw gravitational waves. As a result, it is difficult to 
learn the original signal structure and remove the noise from 
raw data when training directly starts with very low SNRs. We 
found that gradually reducing SNRs during training, an idea 
taken from curriculum learning literature, provides 
regularization, which allows the network to distill more 
accurate information of the underlying signals with larger 
SNRs to signals with lower SNRs. 

The following table and the plot shows how we perform the 
curriculum learning during the training, and the reconstruction 
loss comparison for models with and without this learning 
strategy.

MODEL PERFORMANCE 

DRDAE v.s. EDRDAE 

Compare to other popular approaches 

Comparisons of MSE and overlap across different approaches. 
・/・refers to "metric for quasi-circular" / “metric for 
eccentric". Here "DL" refers to dictionary learning. "WT" 
refers to wavelet thresholding. 

CONCLUSIONS 

In this paper, we proposed a new deep recurrent denoising auto-
encoder to denoise gravitational wave signals contaminated by 
an extremely high level of noise often encountered in realistic 
detection scenarios. By introducing additional structures to the 
model (cross-layer connection, signal amplifier), and by 
adopting a training approach that gradually reduces the SNRs 
of the training samples, we show that our model outperforms 
DRDAE and other tested popular denoising algorithms (PCA, 
dictionary learning and wavelet thresholding) for GW 
denoising. It is also noteworthy that although our denoising 
auto-encoder was only trained with quasi-circular GWs 
contaminated with additive white Gaussian noise, it is able to 
handle both quasi-circular GWs with different mass ratios and 
eccentric GWs embedded in real LIGO noise. Therefore the 
proposed method has great generalization performance. 
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