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We introduce the orthogonal periodic sequences
(OPSs), a tamily of deterministic signals, for the 1den-
tification of functional link polynomial (FLiP) filters.

The OPSs share many characteristics of the perfect || L, persistently exciting the FLiP filter. a memory lower than 20 samples. g'm'

periodic sequences (PPSs). As the PPSs, they allow || We want to find z;(n) of period L such that for any j, | | Different signals have been applied for identification: 5 -17 OPS Period 2" -
the perfect identification of a FLiP filter on a finite time || with 0 < 7 < N; — 1, - two PPSs for LN and WN filters (with order 3, %_18 opS Period 2 PPS Period 357956
interval with the cross-correlation method. In con- hi(5) =< y(n)zi(n —j) > . memory 20, and period L = 357 956); ’ OPgPeriod2 ” 16 é"‘ég%‘:?gégg

trast to PPSs, OPSs can identify also non-orthogonal
FL1P filters, as the Volterra filters. With OPSs, the

Each OPS allows the estimation of a diagonal h;(7)
of the FL1P filter with the cross-correlation method.
We consider a periodic input sequence x(n) of period

For ¢ > 0, it can be proved that z;(n) must satisfy

We have considered the identification of a real device,
a Behringer Mic 100 Vacuum Tube Preamplifier.
Working at 8 kHz sampling frequency, the device has

- eight periodic sequences with uniform and Gaussian
distributions, quantized with 10 bits, and with periods
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quence and can also be quantized. OPSs can often ‘ Z . Y OPSs for LN, WN and Volterra filters of order 3, me- -14
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identify FLiP filters with a sequence period and a com- < foln—my)zi(n) >, = 0 mory 20, have been derived and used for identification. 15!
putational complexity much smaller than that of PPSs. P Pt . ’ Thirteen different settings have been considered for the ] |

for all —(N; — 1) < m; < N; — 1 and My 7 .O’ preamplifier. The SNR was around 50 dB. 3 1o 0P Perod 27
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FLiP filters are a class of linear-in-the-parameters || L > Q; it always admits a solution. 15~ Totl _ YPS Period2® 0P Peroa 2"
(LIP) nonlinear filters. They are a linear combination | | Let us write the system in matrix form, é 19| — o Pe{’“ N
of basis functions, product of nonlinear expansions of Sz =d S 10 : 20 . . . . —
delaved i les. In di 1 form: . . . = o 2 4 6 8 10 12
clayed input samples. 1n diagonal form: The minimum norm solution of the system is S Setting (b)
y(n) = 2_;) 2—:0 hip () fp (12— m) The elements of SS? are cross-correlations between 0 s ' | 15+ :
p— basis functions with different time delays. By prop- v o s Il _ OPS Period 2% _
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where f,(n) are the zero lag basis functions, with
fp(n)e{l, gilz(n)], g2lz(n)], g1lz(n)]gi(z(n-1)],

erly sorting the rows of S, SS* is block Toeplitz and
admits efficient algorithms for 1ts inversion [1].

Fig. 1. Second, third, and total harmonic distortion.
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the FLiP filters are universal approximators. diagonals of the FLiP filter. The same x(n) could be gm —o—OPS Volterra Uniform - \ Il\ . \ .
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, , , The mean square deviation (MSD) of f;(n — j) is loo(T. c)
Some FL1P filters have orthogonal basis functions for MSD; . = E[(hi(j) — hi(j))2] 0g2(L) = .17 _
some input distribution, e.g., LN and WN, thus al- " T J i\ | , Fig. 2. Noise Gain of OPSs for LN, WN and Volterra % | | OPS Perod 2 R _
lowing the identification of the coefficients using the | — .E (<v (”)Zz(” —J)>1)7: filters. _ OPS Period 217 g 852%%W
cross-correlation method MSD; ; 1s proportional to the noise power o2 and 19 \\ < N :
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Orthogonal FLiP filters also admit PPSs, i.e., inversely proportional to < f7(n)>r. REFERENCES 20 = ' ' '
0 2 4 6 8 10 12

periodic sequences that guarantee the perfect orthog-
onality of the basis functions over a period.

Using a PPS input, an orthogonal FLiP filter can
still be 1dentified with the cross-correlation method,

hi(§) =<yn)fi(n —j) > / < fi(n) > .

To compare the OPSs we define the noise gain,
Gu,ij =MSD;; < fi(n—j) >r /E[V*(n)].
For PPSs, it can be proved G, ; ; 1s always 1.
On the contrary, for OPSs it is:
G,/,i,j =< zf(n) >, < f,f(n) >7, .
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Fig. 3. NMSEs for (a) LN filter and (b) Volterra filter
on uniform distribution input, and for (¢) WN filter and
(d) Volterra filter on Gaussian distribution input.



