INTRODUCING THE ORTHOGONAL PERIODIC SEQUENCES FOR THE IDENTIFICATION OF FUNCTIONAL LINK POLYNOMIAL FILTERS

ABSTRACT

We introduce the orthogonal periodic sequences (OPSs), a family of deterministic signals, for the identification of **functional link polynomial** (FLiP) filters. The OPSs share many characteristics of the perfect periodic sequences (PPSs). As the PPSs, they allow the perfect identification of a FLiP filter on a finite time interval with the cross-correlation method. In contrast to PPSs, OPSs can identify also non-orthogonal FLiP filters, as the Volterra filters. With OPSs, the input sequence can be any persistently exciting sequence and can also be **quantized**. OPSs can often identify FLiP filters with a sequence period and a computational complexity much smaller than that of PPSs.

FLIP FILTERS

FLiP filters are a class of linear-in-the-parameters (LIP) nonlinear filters. They are a linear combination of basis functions, product of nonlinear expansions of delayed input samples. In diagonal form:

$$y(n) = \sum_{p=0}^{R-1} \sum_{m=0}^{N_p-1} h_p(m) f_p(n-m)$$

where $f_p(n)$ are the zero lag basis functions, with $f_p(n) \in \{1, g_1[x(n)], g_2[x(n)], g_1[x(n)]g_1[x(n-1)], g_1[x(n-1)]g_1[x(n$..., $g_1[x(n)]g_1[x(n-D)], g_3[x(n)], ...\}.$

When $g_i(\xi)$, $\forall i$, satisfy the Stone-Weierstrass theorem, the FLiP filters are **universal approximators**.

They include many families of polynomial filters, as the Volterra for $g_i(\xi) = \xi^i$, the Legendre nonlinear (LN), $g_i(\xi) \in \{1, \xi, (3\xi^2 - 1)/2, \xi(5\xi^2 - 3)/2, \dots\}$ the Wiener nonlinear (WN), $g_i(\xi) \in \{1, \xi, \xi^2 - \sigma_x^2, \dots, \xi_n\}$ $\xi^3 - 3\sigma_x^2 \xi, \dots \}.$

Some FLiP filters have orthogonal basis functions for some input distribution, e.g., LN and WN, thus allowing the identification of the coefficients using the cross-correlation method.

Orthogonal FLiP filters also admit PPSs, i.e., periodic sequences that guarantee the perfect orthogonality of the basis functions over a period.

Using a PPS input, an orthogonal FLiP filter can still be identified with the cross-correlation method, $h_i(j) = \langle y(n)f_i(n-j) \rangle_L / \langle f_i^2(n) \rangle_L$.

The minimum norm solution of the system is

ALBERTO CARINI DIA – Università di Trieste acarini@units.it

SIMONE ORCIONI AND STEFANIA CECCHI DII – UNIVERSITÀ POLITECNICA DELLE MARCHE s.orcioni@univpm.it, s.cecchi@univpm.it

OPSs

Each OPS allows the estimation of a diagonal $h_i(j)$ of the FLiP filter with the cross-correlation method. We consider a **periodic input** sequence x(n) of period L, persistently exciting the FLiP filter.

We want to find $z_i(n)$ of period L such that for any j, with $0 \leq j \leq N_i - 1$,

$$h_i(j) = \langle y(n)z_i(n-j) \rangle_L$$
.

For i > 0, it can be proved that $z_i(n)$ must satisfy

 $\langle z_i(n) \rangle_L = 0,$ $\langle f_i(n)z_i(n)\rangle_L =$ $\langle f_i(n-m_i)z_i(n)\rangle_L = 0,$ $\langle f_p(n-m_p)z_i(n)\rangle_L = 0,$

for all $-(N_i - 1) < m_i \leq N_i - 1$ and $m_i \neq 0$, $-(N_i - 1) \le m_p \le N_p - 1 \text{ and } 0$ The system has Q_i equations and L variables. For $L \ge Q_i$ it always admits a solution.

Let us write the system in matrix form,

$$Sz = d$$

$$\mathbf{z} = \mathbf{S}(\mathbf{S}\mathbf{S}^T)^{-1}\mathbf{d}.$$

The elements of SS^T are **cross-correlations** between basis functions with different time delays. By properly sorting the rows of S, SS^T is block Toeplitz and admits efficient algorithms for its inversion [1].

When $L \ge Q = \max_i Q_i$, it is possible to develop a set of OPSs and estimate with the same input x(n) all **diagonals** of the FLiP filter. The same x(n) could be used for estimating **different** types of **FLiPs filters**.

OUTPUT NOISE EFFECT

We study the effect of an additive output noise $\nu(n)$. The mean square deviation (MSD) of $f_i(n-j)$ is

$$ISD_{i,j} = E[(h_i(j) - h_i(j))^2]$$

 $= E[(<\nu(n)z_i(n-j)>_L)^2].$ $MSD_{i,j}$ is proportional to the noise power σ_{ν}^2 and inversely proportional to $\langle f_i^2(n) \rangle_L$.

To compare the OPSs we define the **noise gain**, $G_{\nu,i,j} = \text{MSD}_{i,j} < f_i^2(n-j) >_L /E[\nu^2(n)].$ For **PPSs**, it can be proved $G_{\nu,i,j}$ is **always 1**. On the contrary, for **OPSs** it is:

 $G_{\nu,i,j} = \langle z_i^2(n) \rangle_L \cdot \langle f_i^2(n) \rangle_L$.

EXPERIMENTAL RESULTS

We have considered the identification of a **real device**, a Behringer Mic 100 Vacuum Tube Preamplifier. Working at 8 kHz sampling frequency, the device has a memory lower than 20 samples. Different signals have been applied for identification: **two PPSs** for LN and WN filters (with order 3, memory 20, and period L = 357956); - eight periodic sequences with uniform and Gaussian distributions, quantized with 10 bits, and with periods $[6140, 2^{13}, 2^{14}, 2^{15}, 2^{16}, 2^{17}, 2^{18}]$

OPSs for LN, WN and Volterra filters of order 3, memory 20, have been derived and used for identification. Thirteen different settings have been considered for the preamplifier. The SNR was around 50 dB.

filters.

[1] G.-O. Glentis and N. Kalouptsidis, "Efficient algorithms" for the solution of block linear systems with Toeplitz entries," Linear Algebra and its Applications, vol. 179, 1993 [2] A. Carini, S. Orcioni, and S. Cecchi, *Orthogonal periodic* sequences, http://www2.units.it/ipl/res_OPSeqs.htm

Fig. 1. Second, third, and total harmonic distortion.

Fig. 2. Noise Gain of OPSs for LN, WN and Volterra

REFERENCES

NORMALIZED MSES

(gp) -16 HSWN -18 **(P**) -1' (gp) -16 Here and the Here -19 -15 (ap) -16 Here Harace Hara -19

Fig. 3. NMSEs for (a) LN filter and (b) Volterra filter on uniform distribution input, and for (c) WN filter and (d) Volterra filter on Gaussian distribution input.

