PROXIMITY WITHOUT CONSENSUS IN ONLINE MULTI-AGENT OPTIMIZATION

Alec Koppel, Brian Sadler, and Alejandro Ribeiro

Contact E-mail: {akoppel, aribeiro }@seas.upenn.edu, brian.m.sadler6.civ@mail.mil

%y Penn

UNIVERSITY 0f PENNSYLVANIA

Multi-Agent Optimization

» Agents /in a network G = (V, &) sequentially observe signals 6;

= Want to select x; € RP which are good w.r.t. global loss ) . f;
» |f decisions of X; and x; uncorrelated =- consensus optimization
» Consensus: agents try to minimize ) _; f; with constraint X; = X;

» Consider estimation problems where decisions have correlation
= p(Xj, X;) # 0 = consensus yields worse estimation accuracy

» Goal: allow agents the leeway to select good actions w.r.t. global cost
= incorporate the structure of locally observed information
=- avoid limitations of consensus constraints in collaborative learning

» Practical examples:
= multi-target tracking problem in a sensor network
= learning in robotic team with each platform in distinct domain
= online source localization problems

Local and Global Estimators

» Associateto each node /e V

= m-strongly cvx. fi: RP x ©; = R F1(Xy) —{Fa(Xq)— F7(X7) —F10(X10)

— estimator x; € RP

= random signal 9, € O,

Fa(X2)|— F5(Xs5) — Fa(Xg) —iF11(X11)

» Functions f(x;, 6;) for different 6, Fa(Xa) —EIRO— Fo(Xo) —Fia(X12)

— 0obs. of distinct stochastic model

» Agent / wants to compute local estimate

L .
j -

~

= argmin F;(x;) := argmin Ey [fi(X;, 0;)] .
X;cRP X;cRP

X

> Also aims to incorporate info. 6, received at other nodes j # i
= Could consider consensus constraint X; = X; forall j € n;, all 1 € V
= Implicitly assumes distribution of 8; same for all |

Network Proximity

» Generalization of consensus
» Nearby nodes’ obs. 8; and 0,
= similar, possibly unequal
= e.g. estimate non-uniform field

» [ntroduce convex local proximity func.
= hji(X;, X;) with tolerance -;

» Couple node i vars. to neighbors j € n;
= E.g., hy(xi, X)) = [[Xi — Xj|* <

» This leads to constrained stochastic program
N

X" := argmin Z o, fi(Xi, 0;)]

N, ,
XER™ ;4

S.1. h,j X, Xj) < Vi for a”_/ < N;.

» Implicitly allows i to incorporate the relevant info. of neighbors
= avoid incorporating info. from far away (weakly correlated) nodes

» We want to solve this opt. problem in distributed online settings
— nodes don’'t know the dist. of random variable 0,
= observe local instantaneous functions fi(x;, ;) sequentially.

» Distributed gradient descent and dual decomposition can't be used
= they work only when the constraints h;(x;, X;) are linear.
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Lagrange Relaxation and Stochastic Approximation

> At each t we approximately enforce hj(x;, x;) < v forall j € n
= Incentivize information exchange among nearby nodes

» Lagrange relaxation of constrained optimization problem:

N
LX) =D Eg[fi(xi,0)] + > Ay (hy(xi, %)) — ;)
j=1 1JEN,

= \j associated with proximity constraint h;(x;, X;) <
» Convex/concave function in the primal/dual variables, respectively
» Consider stochastic approximation of Lagrangian:

N
Lo, A) =) fi(x;,0i0) + > Nj (hy(xi, X)) — 7).
=1 I.JEN;
— replace average F; with instantaneous loss f;
= Instantaneous loss f; evaluated at realization 8, ; of RVs 6,

» Need dual set projections for bounded Lagrangian primal subgradients
= project dual variable A;; onto a closed subset of RM, where M = |€]

Stochastic Saddle Point Method

» Alternate primal descent and dual ascent steps on stochastic Lagrangian
= Primal descent step: minimize local loss with proximity penality term
= Dual correction =- penalty coeff. associated with network proximity

» Algorithm formulation:

Xt+1 = Xt — €tvxﬁt(xta At)
At = PalAt + e VaLi(Xe, At)]

» Decentralized estimation scheme:
Primal: X; ¢4 = Xt — et(Vx,.f,-(x/,t; 0i) + > (Nt + it Vhi(Xi Xm))
JEN;

Dual: Ajiti1 = P, [Aij,t + et (M(Xie41, Xj011) — i) } -

» Assume primal var. X;; and Lagrange multipliers \; ; kept by node i
» Primal and dual variables variables of distinct agents are decoupled.
» Updates require exchanges of information among neighboring nodes only.

Technical Conditions

» The network G is symmetric and connected with diameter D.
» Lagrangian has Lipschitz continuous gradients w.r.t. primal and dual vars.
IVxL(X, A) = VxL(X, A)|| < Lef[x — x| ,
IVAL(X, A) — VLX) < Lal|X — X

» Primal & projected dual gradient of the Lagrangian are bounded by Gy, Gy
[VxL(X, A < Gx , [[VAL(X,A)]] < G .

» Bounded conditional second moments of primal/dual stoch. grad.:
max ([ Vxla(xe, A2 | Fil
3|V ALi(xe M) 2| F) < 0?

= Fr 2 {Xy, Ay, 0,},_, is sigma algebra measuring alg. hist. to time ¢.

» \° = dual optimal set. Some optimal multipliers lie in projection set:
ANA#£D
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» Sensors learn global information

» Saddle pt. > LMMSE estimator

\ 4

Convergence Results

Theorem: The saddle pt. sequence (X;, \;) run with diminishing stepsize rules

O

00
E €t — OO E €?<OO
t=1

t=1
converges to a primal-dual optimal pair (X*, X*) in expectation as
Iim E

\/x/l(xt, )\t)H =0 :
[—00

and the dual iterates asymptotically achieve the feasibility condition
im E||VaL(X41, M) =0 .

[— 00

Theorem: The Lagrangian L(X;, \;) evaluated at the saddle pt. sequence
(Xt, A¢) converges to a nbhd. of its value at a primal-dual optimal pair L(X*, \*)
when we use a constant stepsize ¢; = ¢ < 1/(2m)

o g
|Imcl>gf £(Xt, )\t) L(X CA ) S am
Moreover, the expected error sequence converges linearly to a nbhd.
€L o

SLL(XeA) — LA < (1 2me)' [£(ko, o) — LI X)] +

Random Field Estimation

> 0;; € RY = the observation collected by sensor / at time .
» Obs. related to signal via noisy linear transformation 6, ; = H;x; + w; ;
» Signal x; € RP is contaminated w/ i.i.d Gaussian noise w;; ~ A/(0, o°l)
» Local MMSE estimator: Ey f(X;, 0,) = |[Hx; — 0;||?
» May improve estimator quality using correlated info. of adjacent nodes
= enforcing equality across the network would hurt estimator equality.
» This leads to the problem: N
X" ;= argmin Z 436,,.[\|H,-x,- — 9,-\\2]
XxcRNe 4

S.1. (1 /2)||X, — X ‘2 < Vi for a”_/ < .

> Constraint (1/2)(|x; — x;||* < 75 = X; close to x; of neighbors j € n;
= Not so close to the estimates x; of nonadjacent nodes k ¢ n;.
» Saddle point algorithm for the random field estimation problem:

Xit+1 = Xjt — €t [ZH/T(Hixi,t —0it) + Z ()\ij,t T )\ji,t) (xi,t - Xj,t)} -

Nt = Pay | Ao+ (e0/2) (%1 = X501l = ) |

» Decentralized estimation scheme for node |
= gives preference to local and nearby information

Correlated Random Field Estimation

" [—LMMSE

Scalarcase: p=qg =1, ~Saddle .
Scalar H = 1, true signal x = 1 =3
Algorithm run T = 500 iterations
Sensors form grid network 3
— 200 x 200 sqg. meter region £
Distance-based correlation: S
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t, number of iterations

—|[f—1:
= I; is location of node j 0
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| —Sa(idle pt.g
—LMMSE |-

= prefer to nearby nodes’ info.

|x; + — x*||, Standard Error

Benefit of saddle pt.
= larger in larger regions

— lower SNR Settings 950 100 150 200 250 300 350 400 450

t, number of iterations
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500

Decentralized Online Source Localization

» Consider an N sensor array in some deployed environment A C RP
|, € RP = position of sensor / in a deployed environment A C RP
Each node seeks location of source signal x € RP through range obs.

\ 2

it = |x —1;|| + Eit
> ct=[e1-- ;ent] = unknown noise vector.

Source localization = wireless communications, geophysics, robotics
The squared range-based least squares (SR-LS) problem is stated as

N 2
X* = argmin » <3r,.(||l,- —X||° — r,?) .
=

XERP
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» Nonconvex = to convexify, expand sq., add constraint, change of vars.

\ 4

In practical settings, SNR is higher for sensors nearer to the source
» This motivates the enforcement of the quadratic constraint

[x; — %j[[2 < min{||x; — 1|2, |x; — 1;][?} for all j € n,
» Sensor / weights importance of sensors j € n; by restricting its estimate X;
= (> ball centered at neighbors’ estimate X;
= radius of /> ball = pairwise min. of estimated distance to source

= we enforce a convex approx. of proximity constraint (log-sum-exp)
» Saddle point method for online source localization

2
ellVi—=lil (y - |)
T It I
Yiti1t = Vit — Et(ZAi,t(Aiafny —biy) + Z )"/’t(el\vf,t—lfllz + ellYieli
JEN;

» Dual update at the link layer of the sensor network

Njt+1 = Pa, [Nt + €9(Yis, y,-,t)}
» New method for online source localization in a sensor network

2 (yi,t_Yj,t))7
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;SP—Prbximityg
---SP-Consensus;
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» N = 64 sensors
= deployed in a grid formation

= 8 x 8 square in a planar
1000 x 1000 region

» Noise is zero-mean Gaussian
= Variance 02 = 2||l; — x*|
» Xx* located at avg. sensor location. 0 100 200 300 400 500 600 700 800 900 1000
= o to distance to source o
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E||Ay;:— bj||?, Local Objective

» Consensus comparison

» Proximity constrained saddle pt.
= consensus saddle pt. 5 - |
— distributed gradient descent —SP-Proximity|

---SP-Consensus|
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» Proximity constrained saddle pit.
= outperforms consensus
— best objective convergence
= smallest standard error
= dual domain convergence

9(¥ityjt), Constraint Violation
\
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Conclusions

» We focus on online multi-agent optimization

= generalize methods based on consensus constraints

= motivated by cases where agents draws obs. from distinct dist.
» Consider stochastic extension of Arrow-Hurwicz saddle pt. method
» Establish convergence to primal-dual optimal pair

= In diminishing and constant step-size schemes
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