PROXIMITY WITHOUT CONSENSUS IN ONLINE MULTI-AGENT OPTIMIZATION

Alec Koppel, Brian Sadler, and Alejandro Ribeiro Contact E-mail: {akoppel, aribeiro}@seas.upenn.edu, brian.m.sadler6.civ@mail.mil

Multi-Agent Optimization

- Agents i in a network $\mathcal{G} = (V, \mathcal{E})$ sequentially observe signals $\theta_{i,t}$ \Rightarrow Want to select $\mathbf{x}_i \in \mathbb{R}^p$ which are good w.r.t. global loss $\sum_i f_i$
- ► Consensus: agents try to minimize $\sum_i f_i$ with constraint $\mathbf{x}_i = \mathbf{x}_i$
- Consider estimation problems where decisions have correlation
- ► Goal: allow agents the leeway to select good actions w.r.t. global cost
- Practical examples:
 - ⇒ multi-target tracking problem in a sensor network
 - ⇒ learning in robotic team with each platform in distinct domain
 - ⇒ online source localization problems
- \Rightarrow *m*-strongly cvx. $f_i : \mathbb{R}^p \times \Theta_i \to \mathbb{R}$
- \Rightarrow estimator $\mathbf{x}_i \in \mathbb{R}^p$
- ⇒ obs. of distinct stochastic model
- Agent i wants to compute local estimate

$$\mathbf{x}_i^{\mathsf{L}} := \underset{\mathbf{x}_i \in \mathbb{R}^p}{\operatorname{argmin}} \, F_i(\mathbf{x}_i) := \underset{\mathbf{x}_i \in \mathbb{R}^p}{\operatorname{argmin}} \, \mathbb{E}_{\theta_i}[f_i(\mathbf{x}_i, \theta_i)] \; .$$

- \blacktriangleright Also aims to incorporate info. θ_i received at other nodes $i \neq i$
 - \Rightarrow Could consider consensus constraint $\mathbf{x}_i = \mathbf{x}_i$ for all $j \in n_i$, all $i \in V$
 - \Rightarrow Implicitly assumes distribution of θ_i same for all i

Network Proximity

- ▶ Nearby nodes' obs. θ_i and θ_i
- ⇒ similar, possibly unequal
- $\Rightarrow h_{ii}(\mathbf{x}_i, \mathbf{x}_i)$ with tolerance γ_{ii}
- \Rightarrow E.g., $h_{ij}(\mathbf{x}_i, \mathbf{x}_i) = ||\mathbf{x}_i \mathbf{x}_i||^2 \le \gamma_{ij}$

- ⇒ avoid incorporating info. from far away (weakly correlated) nodes
- We want to solve this opt. problem in distributed online settings
 - \Rightarrow observe local instantaneous functions $f_i(\mathbf{x}_i, \theta_i)$ sequentially.
- Distributed gradient descent and dual decomposition can't be used \Rightarrow they work only when the constraints $h_{ii}(\mathbf{x}_i, \mathbf{x}_i)$ are linear.

Lagrange Relaxation and Stochastic Approximation

- At each t we approximately enforce $h_{ij}(\mathbf{x}_i, \mathbf{x}_i) \leq \gamma_{ij}$ for all $j \in n_i$ ⇒ Incentivize information exchange among nearby nodes
- ► Lagrange relaxation of constrained optimization problem:
 - $\Rightarrow \lambda_{ii}$ associated with proximity constraint $h_{ii}(\mathbf{x}_i, \mathbf{x}_i) \leq \gamma_{ii}$
- Convex/concave function in the primal/dual variables, respectively

$$\hat{\mathcal{L}}_t(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{i=1}^N f_i(\mathbf{x}_i, \boldsymbol{\theta}_{i,t}) + \sum_{i,j \in n_i} \lambda_{ij} \left(h_{ij}(\mathbf{x}_i, \mathbf{x}_j) - \gamma_{ij} \right).$$

- \Rightarrow replace average F_i with instantaneous loss f_i
- \Rightarrow instantaneous loss f_i evaluated at realization $\theta_{i,t}$ of RVs θ_i
- - \Rightarrow project dual variable $\lambda_{ii,t}$ onto a closed subset of \mathbb{R}^M , where $M = |\mathcal{E}|$

Stochastic Saddle Point Method

- Alternate primal descent and dual ascent steps on stochastic Lagrangian ⇒ Primal descent step: minimize local loss with proximity penality term
 - ⇒ Dual correction ⇒ penalty coeff. associated with network proximity
- Algorithm formulation:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \epsilon_t \nabla_{\mathbf{x}} \hat{\mathcal{L}}_t(\mathbf{x}_t, \lambda_t)$$
 $\lambda_{t+1} = \mathcal{P}_{\Lambda}[\lambda_t + \epsilon_t \nabla_{\lambda} \hat{\mathcal{L}}_t(\mathbf{x}_t, \lambda_t)]$

Decentralized estimation scheme:

Primal:
$$\mathbf{x}_{i,t+1} = \mathbf{x}_{i,t} - \epsilon_t \Big(\nabla_{\mathbf{x}_i} f_i(\mathbf{x}_{i,t}; \boldsymbol{\theta}_{i,t}) + \sum_{j \in n_i} (\lambda_{ij,t} + \lambda_{ji,t}) \nabla_{\mathbf{x}_i} h_{ij}(\mathbf{x}_{i,t}, \mathbf{x}_{j,t}) \Big)$$
Dual: $\lambda_{ij,t+1} = \mathcal{P}_{\Lambda_{ij}} \Big[\lambda_{ij,t} + \epsilon_t \left(h_{ij}(\mathbf{x}_{i,t+1}, \mathbf{x}_{j,t+1}) - \gamma_{ij} \right) \Big].$

- Assume primal var. $\mathbf{x}_{i,t}$ and Lagrange multipliers $\lambda_{ij,t}$ kept by node i
- Primal and dual variables variables of distinct agents are decoupled.
- Updates require exchanges of information among neighboring nodes only.

Technical Conditions

- \blacktriangleright The network \mathcal{G} is symmetric and connected with diameter D.
- Lagrangian has Lipschitz continuous gradients w.r.t. primal and dual vars.

$$\|\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}, \lambda) - \nabla_{\mathbf{x}}\mathcal{L}(\tilde{\mathbf{x}}, \lambda)\| \leq L_{\mathbf{x}}\|\mathbf{x} - \tilde{\mathbf{x}}\|,$$

 $\|\nabla_{\lambda}\mathcal{L}(\mathbf{x}, \lambda) - \nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}, \tilde{\lambda})\| \leq L_{\lambda}\|\lambda - \tilde{\lambda}\|.$

- Primal & projected dual gradient of the Lagrangian are bounded by G_x , G_λ
 - $\|\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})\| \leq G_{\mathbf{x}} \;,\; \|\tilde{\nabla}_{\boldsymbol{\lambda}}\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})\| \leq G_{\boldsymbol{\lambda}} \;.$
- Bounded conditional second moments of primal/dual stoch. grad.:

$$\max \left(\mathbb{E}[\|\nabla_{\mathbf{x}} \hat{\mathcal{L}}_t(\mathbf{x}_t, \boldsymbol{\lambda}_t)\|^2 \, \big| \, \mathcal{F}_t], \\ \mathbb{E}[\|\tilde{\nabla}_{\boldsymbol{\lambda}} \hat{\mathcal{L}}_t(\mathbf{x}_t, \boldsymbol{\lambda}_t)\|^2 \, \big| \, \mathcal{F}_t] \right) \leq \sigma^2.$$

 $\Rightarrow \mathcal{F}_t \supseteq \{\mathbf{x}_u, \boldsymbol{\lambda}_u, \boldsymbol{\theta}_u\}_{u=1}^t$ is sigma algebra measuring alg. hist. to time t.

 $\lambda^* \Rightarrow$ dual optimal set. Some optimal multipliers lie in projection set: $oldsymbol{\lambda}^* \cap oldsymbol{\Lambda}
eq \emptyset$

Convergence Results

Theorem: The saddle pt. sequence $(\mathbf{x}_t, \boldsymbol{\lambda}_t)$ run with diminishing stepsize rules

$$\sum_{t=1}^{\infty} \epsilon_t = \infty \qquad \sum_{t=1}^{\infty} \epsilon_t^2 < \infty$$

converges to a primal-dual optimal pair $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ in expectation as

$$\lim_{t o \infty} \mathbb{E} \|
abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}_t, oldsymbol{\lambda}_t) \| = \mathbf{0} \; ,$$

and the dual iterates asymptotically achieve the feasibility condition

$$\lim_{t\to\infty}\mathbb{E}\|\tilde{\nabla}_{\lambda}\mathcal{L}(\mathbf{x}_{t+1},\lambda_t)\|=0$$
.

Theorem: The Lagrangian $\mathcal{L}(\mathbf{x}_t, \boldsymbol{\lambda}_t)$ evaluated at the saddle pt. sequence $(\mathbf{x}_t, \boldsymbol{\lambda}_t)$ converges to a nbhd. of its value at a primal-dual optimal pair $\mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ when we use a constant stepsize $\epsilon_t = \epsilon < 1/(2m)$

$$\liminf_{t\to\infty} \mathcal{L}(\mathbf{x}_t, \boldsymbol{\lambda}_t) - \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \leq \frac{\epsilon L_{\mathbf{x}} \sigma^2}{4m}.$$

Moreover, the expected error sequence converges linearly to a nbhd.

$$\mathbb{E}[\mathcal{L}(\mathbf{x}_t, \boldsymbol{\lambda}_t) - \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)] \leq (1 - 2m\epsilon)^t \left[\mathcal{L}(\mathbf{x}_0, \boldsymbol{\lambda}_0) - \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)\right] + \frac{\epsilon L_{\mathbf{x}} \sigma^2}{4m}.$$

Random Field Estimation

- $lackbox{} heta_{i,t} \in \mathbb{R}^q \Rightarrow heta$ the observation collected by sensor *i* at time *t*.
- Signal $\mathbf{x}_i \in \mathbb{R}^p$ is contaminated w/ i.i.d Gaussian noise $\mathbf{w}_{i,t} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- ► Local MMSE estimator: $\mathbb{E}_{\theta_i} f_i(\mathbf{x}_i, \theta_i) = ||\mathbf{H}_i \mathbf{x}_i \theta_i||^2$
- May improve estimator quality using correlated info. of adjacent nodes
- This leads to the problem:

$$\mathbf{x}^* := \underset{\mathbf{x} \in \mathbb{R}^{Np}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbb{E}_{\theta_i} \Big[\|\mathbf{H}_i \mathbf{x}_i - \theta_i\|^2 \Big]$$

s.t. $(1/2) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \gamma_{ij}$, for all $j \in n_i$.

- \Rightarrow Not so close to the estimates \mathbf{x}_{k}^{*} of nonadjacent nodes $k \notin n_{i}$.
- ► Saddle point algorithm for the random field estimation problem:

$$\mathbf{x}_{i,t+1} = \mathbf{x}_{i,t} - \epsilon_t \Big[2\mathbf{H}_i^T \big(\mathbf{H}_i \mathbf{x}_{i,t} - \boldsymbol{\theta}_{i,t} \big) + \sum_{j \in n_i} \Big(\lambda_{ij,t} + \lambda_{ji,t} \Big) \Big(\mathbf{x}_{i,t} - \mathbf{x}_{j,t} \Big) \Big].$$

$$\lambda_{ij,t+1} = \mathcal{P}_{\Lambda_{ij}} \left[\lambda_{ij,t} + (\epsilon_t/2) \left(\|\mathbf{x}_{i,t+1} - \mathbf{x}_{j,t+1}\|^2 - \gamma_{ij} \right) \right].$$

- Decentralized estimation scheme for node i
 - ⇒ gives preference to local and nearby information

Correlated Random Field Estimation

- Scalar $\mathbf{H} = 1$, true signal $\mathbf{x} = \mathbf{1}$
- Sensors form grid network
- \Rightarrow 200 \times 200 sq. meter region Distance-based correlation:
- $ho(\mathbf{x}_i,\mathbf{x}_i)=e^{-\|I_i-I_j\|},$ $\Rightarrow l_i$ is location of node j
- Sensors learn global information
- Saddle pt. > LMMSE estimator Benefit of saddle pt.
- ⇒ larger in larger regions

Decentralized Online Source Localization

- ightharpoonup Consider an N sensor array in some deployed environment $\mathcal{A} \subset \mathbb{R}^p$
- ▶ $I_i \in \mathbb{R}^p$ ⇒ position of sensor i in a deployed environment $\mathcal{A} \subset \mathbb{R}^p$
- ightharpoonup Each node seeks location of source signal $\mathbf{x} \in \mathbb{R}^p$ through range obs.

$$r_{i,t} = \|\mathbf{x} - \mathbf{I}_i\| + \varepsilon_{i,t}$$

- $ightharpoonup \varepsilon_t = [\varepsilon_{1,t}; \cdots; \varepsilon_{N,t}] \Rightarrow \text{unknown noise vector.}$
- ➤ Source localization ⇒ wireless communications, geophysics, robotics
- ► The squared range-based least squares (SR-LS) problem is stated as

$$\mathbf{x}^* := \underset{\mathbf{x} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^N \mathbb{E}_{\mathbf{r}_i} \Big(\|\mathbf{I}_i - \mathbf{x}\|^2 - r_i^2 \Big)^2.$$

- ► Nonconvex ⇒ to convexify, expand sq., add constraint, change of vars.
- ► In practical settings, SNR is higher for sensors nearer to the source
- ► This motivates the enforcement of the quadratic constraint
 - $\|\mathbf{x}_{i} \mathbf{x}_{i}\|^{2} \le \min\{\|\mathbf{x}_{i} \mathbf{I}_{i}\|^{2}, \|\mathbf{x}_{i} \mathbf{I}_{i}\|^{2}\} \text{ for all } j \in n_{i}$
- Sensor i weights importance of sensors $j \in n_i$ by restricting its estimate \mathbf{x}_i
 - $\Rightarrow \ell_2$ ball centered at neighbors' estimate \mathbf{x}_i \Rightarrow radius of ℓ_2 ball \Rightarrow pairwise min. of estimated distance to source
- ⇒ we enforce a convex approx. of proximity constraint (log-sum-exp)

Saddle point method for online source localization
$$\mathbf{y}_{i,t+1} = \mathbf{y}_{i,t} - \epsilon_t \Big(2\mathbf{A}_{i,t}^T \big(\mathbf{A}_{i,t} \mathbf{y}_{i,t} - \mathbf{b}_{i,t} \big) + \sum_{i \in \mathbf{p}} \lambda_{ij,t} \Big(\frac{e^{\|\mathbf{y}_{i,t} - \mathbf{I}_i\|^2} (\mathbf{y}_{i,t} - \mathbf{I}_i)}{e^{\|\mathbf{y}_{i,t} - \mathbf{I}_i\|^2} + e^{\|\mathbf{y}_{j,t} - \mathbf{I}_j\|^2}} + (\mathbf{y}_{i,t} - \mathbf{y}_{j,t}) \Big),$$

Dual update at the link layer of the sensor network

$$oldsymbol{\lambda}_{ij,t+1} = \mathcal{P}_{\Lambda_{ij}} ig[oldsymbol{\lambda}_{ij,t} + \epsilon_t g(\mathbf{y}_{i,t},\mathbf{y}_{j,t}) ig]$$

New method for online source localization in a sensor network

Computer Network Security

- ightharpoonup N = 64 sensors
- ⇒ deployed in a grid formation \Rightarrow 8 \times 8 square in a planar
- 1000×1000 region
- Noise is zero-mean Gaussian
- \Rightarrow Variance $\sigma^2 = 2\|\mathbf{I}_i \mathbf{x}^*\|$ x* located at avg. sensor location.
- $\Rightarrow \infty$ to distance to source
- Consensus comparison
- Proximity constrained saddle pt.
 - \Rightarrow consensus saddle pt.
 - distributed gradient descent
- Proximity constrained saddle pt.
 - ⇒ outperforms consensus ⇒ best objective convergence
 - ⇒ smallest standard error ⇒ dual domain convergence

Conclusions

- We focus on online multi-agent optimization
 - ⇒ generalize methods based on consensus constraints
- ⇒ motivated by cases where agents draws obs. from distinct dist. Consider stochastic extension of Arrow-Hurwicz saddle pt. method
- Establish convergence to primal-dual optimal pair
- - ⇒ in diminishing and constant step-size schemes

 $F_1(\mathbf{x}_1) \longleftrightarrow F_4(\mathbf{x}_4) \longleftrightarrow F_7(\mathbf{x}_7) \longleftrightarrow F_{10}(\mathbf{x}_{10}) \longleftrightarrow$

 $F_3(\mathbf{x}_3) \longleftrightarrow F_6(\mathbf{x}_6) \longleftrightarrow F_9(\mathbf{x}_9) \longleftrightarrow F_{12}(\mathbf{x}_{12}) \longleftrightarrow F_$

If decisions of \mathbf{x}_i and \mathbf{x}_i uncorrelated \Rightarrow consensus optimization

- $\Rightarrow \rho(\mathbf{x}_i, \mathbf{x}_i) \neq 0 \Rightarrow$ consensus yields worse estimation accuracy
- ⇒ incorporate the structure of locally observed information ⇒ avoid limitations of consensus constraints in collaborative learning
- **Local and Global Estimators**
- ightharpoonup Associate to each node $i \in V$
- \Rightarrow random signal $\theta_i \in \Theta_i$ \blacktriangleright Functions $f_i(\mathbf{x}_i, \theta_i)$ for different θ_i

- Generalization of consensus
- ⇒ e.g. estimate non-uniform field Introduce convex local proximity func.
- ► Couple node *i* vars. to neighbors $j \in n_i$
- $h_{ii}(\mathbf{x}_i,\mathbf{x}_i) \leq \gamma_{ii}, \quad \text{for all } j \in n_i.$ ► Implicitly allows *i* to incorporate the relevant info. of neighbors
- \Rightarrow nodes don't know the dist. of random variable θ_i

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{i=1}^{N} \mathbb{E}_{\boldsymbol{\theta}_{i}}[f_{i}(\mathbf{x}_{i}, \boldsymbol{\theta}_{i})] + \sum_{i,j \in n_{i}} \lambda_{ij} \left(h_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j}) - \gamma_{ij}\right),$$

- Consider stochastic approximation of Lagrangian:
- ► Need dual set projections for bounded Lagrangian primal subgradients

- ▶ Obs. related to signal via noisy linear transformation $\theta_{i,t} = \mathbf{H}_i \mathbf{x}_i + \mathbf{w}_{i,t}$

$$\Rightarrow$$
 enforcing equality across the network would hurt estimator equality. See leads to the problem: $\mathbf{x}^* := \operatorname{argmin} \sum_{\theta_i}^{N} \mathbb{E}_{\theta_i} \left[\|\mathbf{H}_i \mathbf{x}_i - \theta_i\|^2 \right]$

► Constraint $(1/2)\|\mathbf{x}_i - \mathbf{x}_i\|^2 \le \gamma_{ii} \Rightarrow \mathbf{x}_i^*$ close to \mathbf{x}_i^* of neighbors $j \in n_i$

lle point algorithm for the random field estimation problem:
$$\mathbf{x}_{i|t+1} = \mathbf{x}_{i|t} - \epsilon_t \Big[2\mathbf{H}_i^T (\mathbf{H}_i \mathbf{x}_{i|t} - \boldsymbol{\theta}_{i|t}) + \sum_{i} \left(\lambda_{ii|t} + \lambda_{ii|t} \right) \left(\mathbf{x}_{i|t} - \mathbf{x}_{i|t} \right) \Big].$$

- ightharpoonup Scalar case: p = q = 1,
- ightharpoonup Algorithm run T = 500 iterations
- ⇒ prefer to nearby nodes' info.
 - ⇒ lower SNR settings

https://www.seas.upenn.edu/~akoppel/