

Problem description

Many speech enhancement systems consist of a beamformer and a spectral postfilter. Such spectral suppressors are typically designed for non-directional noise fields, and therefore are suboptimal to suppress highly directional interference such as interfering talkers. We present a spatial suppressor based on the spatial presence probability, taking magnitude and phase of relative transfer functions.

Signal model

STFT domain model assuming one dominant directional sound due to speech sparsity $Y_m(k,n) = A_m(k,\mathbf{r}) S_{\mathbf{r}}(k,n) + V_m(k,n)$

Desired sound

location

Desired signal

$$X_1(k,n) = \begin{cases} A_1(k,\mathbf{r})S_{\mathbf{r}}(k,n) & \text{if} \\ 0 & \text{if} \end{cases}$$

Relative transfer function (RTF)

$$B_{m,1}(k,n) = \frac{A_m(k,\mathbf{r})}{A_1(k,\mathbf{r})} \approx \frac{\mathbf{E}\left\{Y_m(k,\mathbf{r})\right\}}{\mathbf{E}\left\{|Y_1|\right\}}$$

Directional Interference Suppression using a Spatial Relative Transfer Function Feature

Sebastian Braun, Ivan Tashev

$$\Delta = \cos\left\langle \mathbf{b}_{\mathrm{d}}(k), \widehat{\mathbf{b}}(k, n) \right\rangle =$$

Fitted likelihoods models for spatial presence and absence $p(\Delta|H_d), p(\Delta|H_0)$

Ambient noise

 $\mathbf{r} = \mathbf{r}_{d}$ $\mathbf{r} \neq \mathbf{r}_{d}$

 $n)Y_1^*(k,n)\}$ $\overline{(k,n)|^2}$

Conclusions

[1] A. Kuklasinski, S. Doclo, S.H. Jensen, and J. Jensen, "Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids," in Proc. EUSIPCO, Sept. 2014, pp. 61–65. [2] S. Jovicic and Z. Saric, "Adaptive microphone array free of the desired speaker cancellation combined with postfilter," J. Acoust. Soc. Am., vol. 123, no. 5, pp. 3739–3739, 2008.

Evaluation

Nearfield source extraction for HMD user speech 80 dB microphones desired source interfering talkers 90 dB spatial noise 45 – 75 dB SPL

Steering vector model:

> Spatial presence probability using magnitude and phase (important in nearfield) > No requirement for DOA estimator > Efficient suppression of directional interfering talkers and non-directional noise Large reduction of ASR word insertions