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ABSTRACT

This paper considers the problem of super-resolution re-
construction by casting it as an optimization problem with
positive constraints and non-convex objective function. En-
forcing the solution to be simultaneously sparse and non-
negative naturally leads to a non-convex l1{2 quasinorm
minimization problem. A reweighted l1 norm minimiza-
tion algorithm is proposed to solve this problem, which is
tailored for l1{2 quasinorm minimization using the idea of
Majorization-Minimization. Although the problem is non-
convex and non-smooth, and the measurement matrix does
not satisfy restricted isometry conditions, we are able to ob-
tain deterministic stable reconstruction guarantees in presence
of bounded noise by using the structure of the measurement
matrix and non-negativity of the signal. Numerical results
demonstrate that l1{2 minimization promotes sparser solution
and outperforms l1 minimization.

Index Terms— Positive Super-Resolution, l1{2 Mini-
mization, Non-Convex Optimization, Reweighted l1 Norm
Minimization.

1. INTRODUCTION

The problem of super-resolution is fundamental across imag-
ing applications such as astronomy [1], medical imaging [2],
microscopy [3] and radar [4]. In these systems, the resolu-
tion of the captured image is always limited by the physical
measurement process which necessitates the use of sophis-
ticated signal processing techniques to retrieve finer details
that are apparently lost. The problem of super-resolution
with noisy measurements was analyzed in the pioneering
work by Donoho [7] and further developed in recent works
[6, 8] where total-variation (TV) and l1 norm based convex
algorithms were used for promoting sparse structure in super-
resolution reconstruction. The analysis technique of [6, 8]
involves an explicit construction of a certain dual polynomial
(based on the Fejér kernel), whose properties can be exploited
to analyze the performance of convex super-resolution algo-
rithms for noisy line spectrum estimation [9] and low-rank
Toeplitz covariance estimation [10].

More recently, the role of positive constraints in super res-
olution was analyzed in [11] by imposing a new notion of
Rayleigh regularity on the underlying signal. Using the same
dual polynomial as [6, 8], the authors in [11] established sta-
bility guarantees for a simple l1 norm based denoising prob-
lem with non-negative constraint. In another recent work [5],
the author established robust recovery guarantees of positive

streams of spikes by imposing strong structural constraints on
the admissible blurring kernel. It should be noted that exist-
ing analysis of noisy super-resolution focus on solving convex
problems.

In this paper, we show that positive constraints on the un-
known target signal can be exploited in a suitable way along-
side its sparsity, leading to a non-convex super-resolution
problem which minimizes the l1{2 quasinorm of the signal.
Such lqp0 ă q ď 1q norm based non-convex constrained
optimization problems and corresponding algorithms to (ap-
proximately) solve them, have been studied in recent liter-
ature [13, 14, 19, 15, 21]. However, in order to establish
stable reconstruction guarantees, these techniques either rely
on exploiting certain properties of the measurement ma-
trix such as the Restricted Isometry Property (RIP) [16])
[19, 15, 23, 24, 25, 26, 31, 32], or Kruskal rank [14]. How-
ever, the measurement matrix arising in super-resolution
imaging is a deterministic rank-deficient matrix composed of
DFT matrices for which RIP cannot be established. Besides,
l1{2 quasinorm is not differentiable and recent advances in
non-convex gradient descent based algorithms are inapplica-
ble [20, 23, 24].
Our Contributions. In this work, we propose a non-convex
l1{2 quasinorm minimization problem for non-negative super-
resolution reconstruction and provide theoretical guarantees
for stable reconstruction. Inspired by Majorization Minimiza-
tion techniques [21], we propose an iterative reweighted l1
minimization algorithm to approximate the l1{2 quasinorm,
and analyze its convergence and the reconstruction error. Ow-
ing to the special deterministic low-pass structure of our mea-
surement matrix, we cannot use existing RIP-based analysis
of lpp0 ă p ď 1q minimization problems [19]. Instead, we
borrow tools from recent analysis of convex super-resolution
problems [11] and show that they can be used to derive upper
bounds on the reconstruction error (in terms of the so-called
super-resolution factor) for the non-convex problem as well.

2. PROBLEM FORMULATION

The goal of discrete positive super-resolution [11, 5, 12] is to
reconstruct a signal (or image) x‹ P RN from measurement
y P CN of the form [11]

y “ Qx‹ `w x‹ ě 0 (1)

where x‹ is a sparse vector with non-negative entries, w is
the measurement noise and Q P CNˆN is the measurement
matrix. Here, Q represents a low-pass filter such that y only



retains the low-frequency components of x‹, and the high-
frequency components are lost. This imparts the following
special structure to Q [11],

Q “ FHNΛnFN (2)

where FN P CN is given by rFN sk,l “ 1?
N
e´j2πkl{N ,

´N{2 ` 1 ď k ď N{2, 0 ď l ď N ´ 1 and Λn “
diagprλ´N{2`1, ¨ ¨ ¨ , λN{2sq with

λk “

"

1, k “ ´n´1
2 , ¨ ¨ ¨ , n´1

2
0, otherwise

1. Hence, Q only collects the n low-frequency DFT coeffi-
cients of x‹. The goal of super-resolution is to accomplish
the difficult task of recovering the lost high frequency compo-
nents of x‹ by utilizing its sparsity.

In recent efforts to solve the positive superresolution prob-
lem with provable guarantees, the authors in [11] proposed
the following convex optimization problem to estimate sparse
non-negative x‹

min
x
}y ´Qx}1 s.t. x ě 0 pPdenq

Inspite of its simple formulation, pPdenq is quite effective in
finding x‹ with provable guarantees. In fact, it is shown that
if x# is an optimal solution to pPdenq, then the l1 norm of
the estimation error }x# ´ x‹}1 gets amplified by a factor
of p N

n´1 q
2 where N

n´1 is the so-called super-resolution factor
(SRF).

Notice that the formulation pPdenq does not explicitly en-
force any sparsity penalty on x, and only uses the prior that it
is non-negative. If we assume that }w}1 ď δ1, we can further
promote sparsity by using the l1 norm of x as a convex surro-
gate for its sparsity [16]. This will be equivalent to adding a
non-negative constraint to the convex super-resolution prob-
lem proposed in [6, 8]:

min
x
}x}1 s.t. }y ´Qx}p ď δp,x ě 0 pP1q

where p is usually chosen as p “ 1, 2. Although pP1q is remi-
niscent of standard l1 minimization problem from compressed
sensing, conventional analysis tools such as Restricted Isom-
etry Property (RIP) [16] or neighborly-polytope conditions
[17, 18] are inapplicable in this case. This is because Q is
a deterministic rank-deficient matrix composed of DFT ma-
trices, for which neither RIP nor neighborly-polytope prop-
erties can be readily established. The problem pP1q without
the positivity constraint and for p “ 1 was analyzed in [8, 6]
using a different analysis technique that constructs a certain
dual certificate in the form of a trigonometric polynomial, and
obtained similar error bounds as [11].

3. NON-CONVEX POSITIVE SUPER-RESOLUTION
VIA L1{2 QUASINORM MINIMIZATION

We will now show how utilizing the positivity of x‹ actu-
ally leads to a non-convex quasinorm minimization problem,
which can promote higher sparsity and exhibit better perfor-
mance than l1 minimization.

1For ease of presentation, we assume that the ambient dimension N is
even and n is odd [11]

3.1. Motivation for using l1{2 quasinorm in positive
super-resolution

As a simple fact, any non-negative vector x can be repre-
sented as x “ h ˝ h, where ˝ represents the Hadamard prod-
uct. Thus, the convex l1 norm minimization problem pP1q can
be equivalently rewritten in terms of h as

min
h
}h}22 pP̃1q

s.t. }y ´Qph ˝ hq}p ď δp,h ě 0

Without loss of generality, we can assume h is also non-
negative. The formulation pP̃1q has convex objective and non-
convex constraints. Clearly, pP̃1q is equivalent to the convex
problem pP1q due to a one-to-one mapping between h and x,
and the optimal h has the same support as the optimal x. As
evident from pP̃1q, minimizing l1 norm of x is equivalent to
minimizing the l2 norm of h. A natural question to ask is:
what happens if we enforce sparsity of h by replacing its l2
norm with l1 norm in the objective function? In other words,
we consider the following problem

min
h
}h}1 s.t. }y ´Qph ˝ hq}p ď δp,h ě 0 pP̃2q

Using x “ h ˝ h, pP̃2q can be rewritten as

min
x
}x} 1

2
s.t. }y ´Qx}p ď δp,x ě 0 pP2q

where we use the fact that }x}0.51
2

“ }h}1. The problem pP2q

minimizes the non-convex l1{2 quasinorm of x over a con-
vex feasible set. It is well known that minimizng the l1{2
quasinorm favors even sparser solutions over minimizing l1
norm [19, 28, 29, 30]. While l1{2 quasinorm minimization has
been explored and analyzed as a better alternative to l1 norm
for promoting sparsity, the corresponding theoretical guaran-
tees (which are based on RIP) [19, 26, 31, 32] do not apply
to Q which represents a low-pass filter in super-resolution
imaging. We bridge this gap by first proposing an iterative
reweighted l1 norm minimization algorithm (for approximat-
ing the l1{2 quasinorm) and developing theoretical guaran-
tees under which this algorithm can provide stable solution
in presence of noise.

3.2. Iterative Algorithm to approximate l1{2 quasinorm
minimization

Since pP2q is non-convex and has non-differentiable objec-
tive function, recent advances in non-convex gradient descent
based algorithms [20, 23, 24, 25] are not applicable. Inspired
by [19], we propose an iterative reweighted l1 norm mini-
mization algorithm to solve pP2q, by explicitly enforcing pos-
itivity of the desired signal.



Algorithm 1: Non-negative Reweighted l1
Minimization

Input: Noisy measurements y, parameters δp and ε ą 0
Output: An estimate x# of x‹.

1. Initialization: An initial feasible guess x0 such
that }y ´ Qx0}p ď δp,x0 ě 0, and a sequence
of non-increasing positive numbers tεnu such that
limnÑ8 εn “ 0.

2. Iteration: Given xn, obtain xn`1 as

xn`1 “ arg min
zPRN

N´1
ÿ

i“0

zi

pxn,i ` εnq
1
2

pP3q

s.t. }y ´Qz}p ď δp, z ě 0

3. Stopping Criterion: Stop when }xn ´ xn`1}1 ď
ε. Return xn`1 as the estimate of x‹.

The problem pP3q in Algorithm 1 can be identified as a
reweighted l1 minimization problem, where the weights are
given by pxn,i ` εnq

´0.5, i “ 0, ¨ ¨ ¨ , N ´ 1. 2 The moti-
vation stems from prior works in Majorization-Minimization
(MM) algorithms that iteratively minimizes simple (possibly
convex) surrogates for a given objective function [21]. In our
case, we want to minimize the non-convex l1{2 quasinorm
gpzq fi }z ` ε}0.51{2 “

řN´1
i“0

?
zi ` ε, for z ě 0. We instead

iteratively minimize the first-order linear approximation of
gpzq at z “ xn, giving rise to the following formulation

min
zě0

!

gpxnq `
N´1
ÿ

i“0

1

2

zi ´ xn,i
?
xn,i ` ε

)

, s.t. }y ´Qz}p ď δp, (3)

Here,
řN´1
i“0

zi?
xn,i`ε

can be identified as the weighted l1

norm of non-negative z, implying that (3) identical to pP3q.

4. ANALYSIS OF L1{2 MINIMIZATION:
CONVERGENCE AND ERROR BOUND

A main contribution of our paper is to analyze Algorithm 1
given the special structure of the low-pass filter Q, and de-
velop explicit bounds on the estimation error }x‹ ´ x#}1.
Although Algorithm 1 does not solve a convex problem, we
show that the error bound behaves similar to the convex non-
negative superresolution algorithm proposed in [11] and gets
amplified by SRF2.

We begin by defining the set of signals obyeing separation
condition[10, 9].
Definition 1. (Set of Non-Negative Signals Obeying Separa-
tion Condition) Given N and n, the set ∆`sep is given by

tx P CN ,x ě 0 | ρp
k

N
,
l

N
q ě

4

n´ 1
@k ‰ l P supppxqu

2The positive parameter εn is used to avoid zero denominator [21].

where ρp¨, ¨q is a wrap-around distance function [6] such
that for @µ1, µ2 P r0, 1s, we have ρpµ1, µ2q fi minp|µ1 ´
µ2|, |µ1 ` 1´ µ2|, |µ2 ` 1´ µ1|q

The following theorem shows that the sequence of iterates
produced by Algorithm 1 has a converging subsequence, and
whenever x‹ P ∆`sep, the limit of this convergent subsequence
produces a stable estimate of x‹ (and in particular, exactly
recovers x‹ in absence of noise).
Theorem 1. Given any non-increasing positive sequence
tεnu and a feasible initial point x0, the solution sequence
txnu of Algorithm 1 has a convergent subsequence which
converges to a feasible point x# of pP2q. Furthermore, if
x‹ P ∆`sep, the limit x# obeys

}x# ´ x‹}1 ď C

ˆ

N

n´ 1

˙2

δ1 (4)

where C is a positive constant.
Proof. Notice that

N´1
ÿ

i“0

pxn`1,i ` εn`1q
1{2

paq
ď

N´1
ÿ

i“0

pxn`1,i ` εnq
1{2

pxn,i ` εnq1{4
pxn,i ` εnq

1{4

pbq
ď

«

N´1
ÿ

i“0

pxn`1,i ` εnq

pxn,i ` εnq1{2

ff1{2 «N´1
ÿ

i“0

pxn,i ` εnq
1{2

ff1{2

pcq
ď

«

N´1
ÿ

i“0

pxn,i ` εnq

pxn,i ` εnq1{2

ff1{2 «N´1
ÿ

i“0

pxn,i ` εnq
1{2

ff1{2

“

N´1
ÿ

i“0

pxn,i ` εnq
1{2

where (a) is due to εn`1 ď εn, (b) follows from Hölder’s
inequality and (c) is true because xn`1 is the optimal solution
of pP3q. We further use the fact that [19]

}xn}8 ď

«

N´1
ÿ

i“0

pxn,i ` εnq
1{2

ff2

ď

«

N´1
ÿ

i“0

px0,i ` ε0q
1{2

ff2

This shows that the sequence txnu is bounded, and thus it has
a converging subsequence. Additionally, the feasible set of
pP3q is the intersection of non-negative orthant and closed lp
ball (where p “ 1, 2) and hence any cluster point of txnu will
be feasible [22].

To prove the second part, we use the following fact about
Q from [11]. Let v “ x# ´ x‹, and Tv “ tl|vl ă 0, 0 ď l ď

N ´ 1u. If x‹ P ∆`sep, there exists q P RN and c
`

n´1
N

˘2
ď

η ă 1 where c “ 0.0036, such that Qq “ q and [11]

ql “ ´η If l P Tv; η ă ql ă 1´ η otherwise

Given the existence of such a q, we have

|qTv| “ |pQqqTv| “ |qTQv| ď }q}8}Qv}1

ď p1´ ηq}Qx# ´Qx‹}1

ď p1´ ηq
`

}Qx# ´ y}1 ` }Qx‹ ´ y}1
˘

ď 2p1´ ηqδ1



On the other hand, we also have

|qTv| “ |
N´1
ÿ

l“0

qlvl| “
N´1
ÿ

l“0

qlvl ě η}v}1

The proof completes by using η “ c
`

n´1
N

˘2
.

5. NUMERICAL RESULTS

We now conduct numerical experiments to demonstrate that
the proposed reweighted iterative algorithm for approximat-
ing l1{2 quasinorm minimization can produce better estimate
of x‹ both in terms of sparsity and smaller estimation error.
We choose N “ 64, n “ 21, and the true sparsity is set at
}x‹}0 “ 6. The non-zero entries of x‹ are produced by first
generating uniform random variables between 1 and 2 and
then normalizing the entries so that }x‹}1 “ 1. Similarly,
the measurement noise w is produced by generating complex
standard Gaussian random variables and then normalizing w
such that }w}1 “ δ1. We will compare the performance of
different algorithms by varying δ1. To implement Algorithm
1, we set the stopping parameter to ε “ 0.001 and select
εn “

10´4

n .
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Fig. 1. (Left) Comparative performance of different algo-
rithms as a function of Signal-to-Noise ratio (SNR). The re-
sults are averaged over 1200 Monte Carlo runs. (Right) Noise
Amplification Factor (NAF) of pPdenq, pP1q and proposed l1{2
minimization, as a function of Super-Resolution Factor (SRF)
N
n´1 . The results are averaged over 800 runs.

In Fig. 1, we compare the performance of pPdenq, pP1q,
and pP2q

3 by varying δ1 which represents the l1 norm of
the noise w. The Signal-to-Noise ratio (SNR) is defined
as 20 logp }x

‹
}1

}w}1
q. It can be seen that the proposed algo-

rithm produces the smallest normalized estimation error
}x# ´ x‹}1{}x

‹}1 and outperforms both pPdenq and pP1q.
In Fig.1, we also plot NAF fi

}x#
´x‹

}1
}w}1

which represents
the factor by which the estimation error is amplified with re-
spect to the input noise, as a result of super-resolution recon-
struction. As before, the proposed l1{2 based algorithm shows
minimum noise amplification. Moreover, the noise amplifica-
tion of the proposed algorithm follows similar trend as [11],
as predicted by the noise bound (4).

We finally demonstrate the reconstruction quality of the
Algorithm 1 for 2D super-resolution. The proposed algorithm
can be readily extended to two dimensions by choosing Q as
a 2D DFT matrix. Fig. 2 shows the performance of Algorithm

3we choose p “ 1 for solving pPdenq and pP1q

1 and pP1q on synthetic 2D data. The ground truth is a sparse
NˆN image whereN “ 24. We generate the low-frequency
measurements by only retaining the 49 low frequency DFT
coefficients. We further normalize w so that }w}1 “ 0.1. It
can be clearly seen that Algorithm 1 exactly recovers the true
support while pP1q produces several false peaks. This fur-
ther corroborates the fact that the proposed l1{2 minimization
framework indeed favors and identifies sparser solutions.
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Fig. 2. (Top Left) Ground truth image with positive emitters.
(Top Right) Measured image consisting of only low frequency
components. (Bottom Left) Estimate produced by solving
convex problem pP1q (Bottom Right) Estimate produced by
the proposed iterative l1{2 minimization algorithm.

6. CONCLUSION

In this paper, we analyzed the problem of super-resolution
where the desired signal is both sparse and non-negative. We
proposed a constrained non-convex l1{2 quasinorm minimiza-
tion problem to promote sparsity in the reconstructed sig-
nal. Such a formulation naturally stems from exploiting non-
negative constraints on the signal. Although l1{2 quasinorm
is non-convex and non-differentiable and the measurement
matrix does not satisfy RIP, the stability of the solution can
still be guaranteed by constructing appropriate dual certifi-
cates. An iterative reweighted l1 minimization algorithm is
proposed to approximate the l1{2 quasinorm and simulations
show that it has better performance than l1 norm minimiza-
tion, in terms of both accuracy and sparsity of the solution. A
complete analysis of the iterative algorithm and derivation of
tighter error upper bounds will be left as future work.
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ery for Sparse Super-Resolution of Positive Measures”,
J. Fourier Anal. Appl., vol. 23, no. 5, pp. 1153-1194,
2017.

[13] I. F. Gorodnitsky and B. D. Rao, “Sparse signal
reconstruction from limited data using FOCUSS: A
reweighted minimum norm algorithm”, IEEE Transac-
tions on Signal Processing, vol. 45, no. 3, pp. 600 - 616,
March 1997.

[14] Md. M. Hyder and K. Mahata, “An improved smoothed
l0 approximation algorithm for sparse representation”
IEEE Transactions on Signal Processing, vol. 58, no.
4, pp. 2194 - 2205, April 2010.

[15] T. Blumensath and M. E. Davies, “Normalized itera-
tive hard thresholding: guaranteed stability and perfor-
mance” IEEE J. Selected Topics in Signal Processing,
vol. 4, no. 2, pp. 298-309, April 2010.

[16] S. Foucart and H. Rauhut, “A Methematical Introduction
to Compressive Sensing”, Birkhäuser/Springer, New
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