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ABSTRACT

This paper considers the problem of super-resolution re-
construction by casting it as an optimization problem with
positive constraints and non-convex objective function. En-
forcing the solution to be simultaneously sparse and non-
negative naturally leads to a non-convex [/, quasinorm
minimization problem. A reweighted /; norm minimiza-
tion algorithm is proposed to solve this problem, which is
tailored for l,/, quasinorm minimization using the idea of
Majorization-Minimization. Although the problem is non-
convex and non-smooth, and the measurement matrix does
not satisfy restricted isometry conditions, we are able to ob-
tain deterministic stable reconstruction guarantees in presence
of bounded noise by using the structure of the measurement
matrix and non-negativity of the signal. Numerical results
demonstrate that [, , minimization promotes sparser solution
and outperforms /; minimization.

Index Terms— Positive Super-Resolution, 1/, Mini-

mization, Non-Convex Optimization, Reweighted [; Norm
Minimization.

1. INTRODUCTION

The problem of super-resolution is fundamental across imag-
ing applications such as astronomy [1], medical imaging [2],
microscopy [3] and radar [4]. In these systems, the resolu-
tion of the captured image is always limited by the physical
measurement process which necessitates the use of sophis-
ticated signal processing techniques to retrieve finer details
that are apparently lost. The problem of super-resolution
with noisy measurements was analyzed in the pioneering
work by Donoho [7]] and further developed in recent works
[l6} 8] where total-variation (TV) and [; norm based convex
algorithms were used for promoting sparse structure in super-
resolution reconstruction. The analysis technique of [6, 8]
involves an explicit construction of a certain dual polynomial
(based on the Fejér kernel), whose properties can be exploited
to analyze the performance of convex super-resolution algo-
rithms for noisy line spectrum estimation [9] and low-rank
Toeplitz covariance estimation [10].

More recently, the role of positive constraints in super res-
olution was analyzed in [11] by imposing a new notion of
Rayleigh regularity on the underlying signal. Using the same
dual polynomial as [6} 18], the authors in [11] established sta-
bility guarantees for a simple /; norm based denoising prob-
lem with non-negative constraint. In another recent work [5]],
the author established robust recovery guarantees of positive

streams of spikes by imposing strong structural constraints on
the admissible blurring kernel. It should be noted that exist-
ing analysis of noisy super-resolution focus on solving convex
problems.

In this paper, we show that positive constraints on the un-
known target signal can be exploited in a suitable way along-
side its sparsity, leading to a non-convex super-resolution
problem which minimizes the /> quasinorm of the signal.

Such I,(0 < ¢ < 1) norm based non-convex constrained
optimization problems and corresponding algorithms to (ap-
proximately) solve them, have been studied in recent liter-
ature 13} 114, 19, [15 21]. However, in order to establish
stable reconstruction guarantees, these techniques either rely
on exploiting certain properties of the measurement ma-
trix such as the Restricted Isometry Property (RIP) [L16])
[19, [15) 23, 24 125! 26, [31) |32]], or Kruskal rank [14]]. How-
ever, the measurement matrix arising in super-resolution
imaging is a deterministic rank-deficient matrix composed of
DFT matrices for which RIP cannot be established. Besides,
l1/2 quasinorm is not differentiable and recent advances in
non-convex gradient descent based algorithms are inapplica-
ble [20, 23 124].

Our Contributions. In this work, we propose a non-convex
l1/2 quasinorm minimization problem for non-negative super-
resolution reconstruction and provide theoretical guarantees
for stable reconstruction. Inspired by Majorization Minimiza-
tion techniques [21], we propose an iterative reweighted /;
minimization algorithm to approximate the I,/ quasinorm,
and analyze its convergence and the reconstruction error. Ow-
ing to the special deterministic low-pass structure of our mea-
surement matrix, we cannot use existing RIP-based analysis
of [,(0 < p < 1) minimization problems [19]. Instead, we
borrow tools from recent analysis of convex super-resolution
problems [11] and show that they can be used to derive upper
bounds on the reconstruction error (in terms of the so-called
super-resolution factor) for the non-convex problem as well.

2. PROBLEM FORMULATION

The goal of discrete positive super-resolution [[L1} 5 [12] is to
reconstruct a signal (or image) x* € R from measurement
y € CV of the form [11]]
y=Qx* +w x>0 (D
where x* is a sparse vector with non-negative entries, w is

the measurement noise and Q € CV*¥ is the measurement
matrix. Here, Q represents a low-pass filter such that y only



retains the low-frequency components of x*, and the high-
frequency components are lost. This imparts the following
special structure to Q [[L1]],

Q=FyA.Fy ©))
where Fy € CV is given by [Fn]r;, =

N2+1<k<N20<i<N-1adA, =
diag([A /2415 s Any2]) with

-1 -1
A= Lok=tg e B
0, otherwise

1_,—j2rkl/N
/N b

[1_1 Hence, Q only collects the n low-frequency DFT coeffi-
cients of x*. The goal of super-resolution is to accomplish
the difficult task of recovering the lost high frequency compo-
nents of x* by utilizing its sparsity.

In recent efforts to solve the positive superresolution prob-
lem with provable guarantees, the authors in [11] proposed
the following convex optimization problem to estimate sparse
non-negative x*

rr;in ly — Qx|1 st x=20 (Pyen)

Inspite of its simple formulation, (Py,) is quite effective in
finding x* with provable guarantees. In fact, it is shown that
if x# is an optimal solution to (Pyep), then the 1 norm of
the estimation error |x* — x*|; gets amplified by a factor
of (-25)? where -2 is the so-called super-resolution factor
(SRF).

Notice that the formulation (Pg,) does not explicitly en-
force any sparsity penalty on x, and only uses the prior that it
is non-negative. If we assume that |w||; < d;, we can further
promote sparsity by using the /; norm of x as a convex surro-
gate for its sparsity [[L6]. This will be equivalent to adding a
non-negative constraint to the convex super-resolution prob-
lem proposed in [6} 8]]:

min [x[y st |y = Qx[p < dp,x >0 (P)

where p is usually chosen as p = 1, 2. Although (P;) is remi-
niscent of standard /; minimization problem from compressed
sensing, conventional analysis tools such as Restricted Isom-
etry Property (RIP) [16] or neighborly-polytope conditions
[L7, 18] are inapplicable in this case. This is because Q is
a deterministic rank-deficient matrix composed of DFT ma-
trices, for which neither RIP nor neighborly-polytope prop-
erties can be readily established. The problem (P;) without
the positivity constraint and for p = 1 was analyzed in 8 6]
using a different analysis technique that constructs a certain
dual certificate in the form of a trigonometric polynomial, and
obtained similar error bounds as [[11]].

3. NON-CONVEX POSITIVE SUPER-RESOLUTION
VIA L/, QUASINORM MINIMIZATION

We will now show how utilizing the positivity of x* actu-
ally leads to a non-convex quasinorm minimization problem,
which can promote higher sparsity and exhibit better perfor-
mance than {; minimization.

IFor ease of presentation, we assume that the ambient dimension IV is
even and n is odd [L1]

3.1. Motivation for using [, quasinorm in positive
super-resolution

As a simple fact, any non-negative vector x can be repre-
sented as x = h o h, where o represents the Hadamard prod-
uct. Thus, the convex /; norm minimization problem (P;) can
be equivalently rewritten in terms of h as

(F1)
st. [y —Q(hoh)|,<d,h=>0

. h 2
min b3

Without loss of generality, we can assume h is also non-
negative. The formulation (P ) has convex objective and non-

convex constraints. Clearly, (I:’l) is equivalent to the convex
problem (P;) due to a one-to-one mapping between h and x,
and the optimal h has the same support as the optimal x. As

evident from (P;), minimizing /; norm of x is equivalent to
minimizing the /s norm of h. A natural question to ask is:
what happens if we enforce sparsity of h by replacing its lo
norm with /; norm in the objective function? In other words,
we consider the following problem

min[bls st |y - Qhoh), <5h>0 (P)

Using x = hoh, (]52) can be rewritten as

min [x[; st |y —Qx|, <bp,x =0 (P)

where we use the fact that |x|® = ||h[;. The problem (P)
2

minimizes the non-convex [, quasinorm of x over a con-
vex feasible set. It is well known that minimizng the [y /5
quasinorm favors even sparser solutions over minimizing /;
norm [19,128,129,130]. While /, /; quasinorm minimization has
been explored and analyzed as a better alternative to /; norm
for promoting sparsity, the corresponding theoretical guaran-
tees (which are based on RIP) [[19, 126} 31} 132] do not apply
to Q which represents a low-pass filter in super-resolution
imaging. We bridge this gap by first proposing an iterative
reweighted [, norm minimization algorithm (for approximat-
ing the [,/ quasinorm) and developing theoretical guaran-
tees under which this algorithm can provide stable solution
in presence of noise.

3.2. Iterative Algorithm to approximate /,/, quasinorm
minimization

Since (P) is non-convex and has non-differentiable objec-
tive function, recent advances in non-convex gradient descent
based algorithms [20} 23|24, 125]] are not applicable. Inspired
by [19], we propose an iterative reweighted /; norm mini-
mization algorithm to solve (P,), by explicitly enforcing pos-
itivity of the desired signal.



Algorithm 1: Non-negative Reweighted [
Minimization

Input: Noisy measurements y, parameters 0, and € > 0
Output: An estimate x7 of x*.

1. Initialization: An initial feasible guess xg such
that |y — Qxo|, < 6,,%¢ > 0, and a sequence
of non-increasing positive numbers {€,,} such that
lim,, o €, = 0.

2. Iteration: Given x,,, obtain x,,1 as
N-1

Xnt+1 = arg Igﬂigg
V4

Zi
i=0 (xn,i + en)
st. |y—Qzl, <6, 20

(Ps)

[N

3. Stopping Criterion: Stop when |x,, — X, 111 <
€. Return x,, 1 as the estimate of x*.

The problem (P;) in Algorithm 1 can be identified as a
reweighted /; minimization problem, where the weights are
given by (2, + €,)7°%,i = 0,--- , N — 1. | The moti-
vation stems from prior works in Majorization-Minimization
(MM) algorithms that iteratively minimizes simple (possibly
convex) surrogates for a given objective function [21]]. In our
case, we want to minimize the non-convex [; /2 quasinorm

9(z) = |z + €| = SN Nz F e forz > 0. We instead
iteratively minimize the first-order linear approximation of
g(z) at z = x,,, giving rise to the following formulation

N-1

1 Zi — Tng
. ) <
Iznzuol {g(xn) i:§0 B %ni,i 6}7 S.t. Hy QZHp < 51)7 3)

Here, sz\i —01 \/Ii? can be identified as the weighted [y
norm of non-negative z, implying that (3)) identical to (P3).

4. ANALYSIS OF L/, MINIMIZATION:
CONVERGENCE AND ERROR BOUND

A main contribution of our paper is to analyze Algorithm 1
given the special structure of the low-pass filter Q, and de-
velop explicit bounds on the estimation error ||x* — x7|;.
Although Algorithm 1 does not solve a convex problem, we
show that the error bound behaves similar to the convex non-
negative superresolution algorithm proposed in [11] and gets
amplified by SRF?.

We begin by defining the set of signals obyeing separation
condition[10} 9].
Definition 1. (Set of Non-Negative Signals Obeying Separa-
tion Condition) Given N and n, the set A} is given by

sep
k1 4

() > ——
N' N n—1

2The positive parameter €, is used to avoid zero denominator [21]].

{(xeC¥,x>0]p Vk # 1 € supp(x)}

where p(-,-) is a wrap-around distance function [I6]] such
that for Yy, pe € [0, 1], we have p(u1, p2) = min(|p; —
pal |y + 1= pal [p2 + 1 — pal)

The following theorem shows that the sequence of iterates
produced by Algorithm 1 has a converging subsequence, and
whenever x* € Ajep, the limit of this convergent subsequence
produces a stable estimate of x* (and in particular, exactly
recovers X* in absence of noise).

Theorem 1. Given any non-increasing positive sequence
{en} and a feasible initial point x, the solution sequence
{xn} of Algorithm 1 has a convergent subsequence which

converges to a feasible point x* of (Py). Furthermore, if

x* € Al the limit x* obeys

. N Y
where C'is a positive constant.
Proof. Notice that
(Tn41,i + €n+1)1/2
(anrl,i + En)1/2
(Tpi + €)%

1/2 1/2
(b) N-1 (.T 1 +e ) N-1 .
n ) n ) /2
< (s + e )12 E (@i + €n)
; n,i n i=0

(Tni + en)1/4

1/2 1/2
(o) [NSL (Zni + €n) 1 [N_l
0Ny lmite) | IV L e
l 5 (2nitea)t’? i=0
N

where (a) is due to €,41 < €,, (b) follows from Holder’s
inequality and (c) is true because x,, 1 is the optimal solution
of (P3). We further use the fact that [19]

N-1 2 N—1 2
”anOC < l Z (l‘mz’ + En)1/2] < l Z (17071‘ + 50)1/21
i=0 i=0

This shows that the sequence {x,, } is bounded, and thus it has
a converging subsequence. Additionally, the feasible set of
(Ps) is the intersection of non-negative orthant and closed I,

ball (where p = 1, 2) and hence any cluster point of {x,,} will
be feasible [22].
To prove the second part, we use the following fact about

Q from [11]. Let v = x* —x*,and T, = {l|v; < 0,0 < I <
N —1}. If x* € A{,, there exists g € RY andc("T_l)2 <

sep?

1 < 1 where ¢ = 0.0036, such that Qq = q and [[11]]
q=-n IfleTy;
Given the existence of such a q, we have
a"v|=(Qa)"v| = la"Qv| < |d]« Qv
< (1-n)Qx* - Qx*|x
<1 =n) (|Qx* =y +[Qx" —y[1) <2(1 - )5

n<gq <1—n otherwise



On the other hand, we also have
N-1 N-1
vl =1 qwl = ] av = nlvi
1=0 =0

The proof completes by using n = ¢ ("T_l) 2, O

5. NUMERICAL RESULTS

We now conduct numerical experiments to demonstrate that
the proposed reweighted iterative algorithm for approximat-
ing /1 quasinorm minimization can produce better estimate
of x* both in terms of sparsity and smaller estimation error.
We choose N = 64, n = 21, and the true sparsity is set at
|x*|lo = 6. The non-zero entries of x* are produced by first
generating uniform random variables between 1 and 2 and
then normalizing the entries so that |x*||; = 1. Similarly,
the measurement noise w is produced by generating complex
standard Gaussian random variables and then normalizing w
such that |w|; = J;. We will compare the performance of
different algorithms by varying ;. To implement Algorithm
1, we set the stopping parameter to ¢ = 0.001 and select

€En =

Normalized Estimation Error

14 16

08 1 1
SNR dB log(SRF)

Fig. 1. (Left) Comparative performance of different algo-
rithms as a function of Signal-to-Noise ratio (SNR). The re-
sults are averaged over 1200 Monte Carlo runs. (Right) Noise
Amplification Factor (NAF) of (Pgen), (P1) and proposed [;
minimization, as a function of Super-Resolution Factor (SRF)
%. The results are averaged over 800 runs.

In Fig. |1} we compare the performance of (Pen), (P1),
and (P) E|by varying §; which represents the [; norm of
the noise w. The Signal-to-Noise ratio (SNR) is defined

as 20 log(lh’i‘l“f). It can be seen that the proposed algo-

rithm produces the smallest normalized estimation error
|x# — x*|1/||x*|1 and outperforms both (Py.,) and (Py).

In Fig , we also plot NAF = "l (pyich represents

Iwily
the factor by which the estimation error is amplified with re-
spect to the input noise, as a result of super-resolution recon-
struction. As before, the proposed [, 5 based algorithm shows
minimum noise amplification. Moreover, the noise amplifica-
tion of the proposed algorithm follows similar trend as [11]],
as predicted by the noise bound ().

We finally demonstrate the reconstruction quality of the
Algorithm 1 for 2D super-resolution. The proposed algorithm
can be readily extended to two dimensions by choosing Q as
a 2D DFT matrix. Fig. 2]shows the performance of Algorithm

3we choose p = 1 for solving (Pye,) and (Py)

1 and (Py) on synthetic 2D data. The ground truth is a sparse
N x N image where N = 24. We generate the low-frequency
measurements by only retaining the 49 low frequency DFT
coefficients. We further normalize w so that |w|; = 0.1. It
can be clearly seen that Algorithm 1 exactly recovers the true
support while (P;) produces several false peaks. This fur-
ther corroborates the fact that the proposed /; /, minimization
framework indeed favors and identifies sparser solutions.
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Fig. 2. (Top Left) Ground truth image with positive emitters.
(Top Right) Measured image consisting of only low frequency
components. (Bottom Left) Estimate produced by solving
convex problem (P;) (Bottom Right) Estimate produced by
the proposed iterative /; , minimization algorithm.

6. CONCLUSION

In this paper, we analyzed the problem of super-resolution
where the desired signal is both sparse and non-negative. We
proposed a constrained non-convex /o quasinorm minimiza-
tion problem to promote sparsity in the reconstructed sig-
nal. Such a formulation naturally stems from exploiting non-
negative constraints on the signal. Although I, /5 quasinorm
is non-convex and non-differentiable and the measurement
matrix does not satisfy RIP, the stability of the solution can
still be guaranteed by constructing appropriate dual certifi-
cates. An iterative reweighted /; minimization algorithm is
proposed to approximate the /; , quasinorm and simulations
show that it has better performance than /; norm minimiza-
tion, in terms of both accuracy and sparsity of the solution. A
complete analysis of the iterative algorithm and derivation of
tighter error upper bounds will be left as future work.
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