Multitask Learning For Frame-Level Instrument Recognition

¹Yun-Ning Hung, ²Yi-An Chen and ¹Yi-Hsuan Yang

¹ Research Center for IT innovation, Academia Sinica, Taipei, Taiwan ² KKBOX Inc., Taiwan

[Project Website] https://biboamy.github.io/streaming-demo/main_site/

Time step

Introduction

nstrum

Frame-level instrument recognition

- Predict the instrument labels in each time frame
- Pitch can help frame-level instrument recognition [3]

Why multitask learning?

• By sharing representations between different tasks, we can enable our model to generalize better on our original task

Multi-pitch streaming

Predict the instrument that plays each individual note event (multi-pitch streaming)

Has been used successfully across many applications, such as computer vision, NLP and speech recognition, but not so much on music

Data

Problem

- No big dataset with instrument and pitch labels Musescore dataset:
- Collect more than 344,166 pieces of song from Musescore forum
- Paired mp3 and MIDI files
- Include variety of genre and 128 instruments
- Synthesized music (from variety of synthesizers)
- We process the MIDi files to pianoroll, multi-pitch labels and instrument frame labels
 Limitation:
- No singing voice
- Not realistic music

Dataset	Pitch labels	Instrument Labels	Real or Synth	Genre	Numbers of songs
MedleyDB	△ (partially)		Real	Variety	122
MusicNet			Real	Classic	330
Bach10			Real	Classic	10
Mixing Secret			Real	Variety	258
Musescore (in this paper)			Synth	Variety	344,166

- The encoder and decoder are composed of four residual blocks. Each residual block has three convolution/up-convolution, two batchNorm and two leakyReLU layers.
- Binary Cross Entropy between ground truth and
- System

Piano roll: representation for multi-pitch streaming

Lroll

Instrument activity detection

Method	Instrument	Pitch	Pianoroll
L_{roll} only (ablated)			0.623
L_i only (ablated)	0.896		
L_p only (ablated)		0.799	
all (proposed)	0.947	0.803	0.647

Method	Training Set	Piano	Guitar	Violin	Cello	Flute	Avg
[1]	YouTube-8M	0.766	0.780	0.787	0.755	0.708	0.759
[2]	Training split of 'MedleyDB+Mixing Secrets'	0.733	0.783	0.857	0.860	0.851	0.817
[3]	MuseScore training subset	0.690	0.660	0.697	0.774	0.860	0.736
Ours	MuseScore training subset	0.718	0.819	0.682	0.812	0.961	0.798

- Multitask learning is better than single task learning method
- Different methods but same testing set in [2]

 Music Transcription

 In this page, we provide some samples to demonstrate our music transcription result proposed by this paper:

 Multitask learning for frame-level instrument recognition

 Original Song
 Transcription result

predicted value

- Doing three tasks at the same time:
 - o Piano roll prediction
 - o Multi-pitch estimation
 - o Instrument activity detection

- Testing set includes multi-instrument and singing voice
- F1-score of each instrument
- Compares favorably with [2]

- Using different synthesizers to augment our data
- Include singing voice into our model
- Increase instrument categories
- Music style transfer: change the latent vector Z in a meaningful way so that the output score can be modified too

Sample 1:	▶ 0:00 / 2:15 ●	•) :	▶ 0:00 / 2:10 ●	● :
Sample 2:	▶ 0:00 / 1:16 ●	• :	▶ 0:00 / 1:14 ●	● :
Sample 3:	▶ 0:00 / 2:05 ●	• :	▶ 0:00 / 2:00 ●	● :
Sample 4:	▶ 0:00 / 0:59 ●	•) :	▶ 0:00 / 0:56 ●	● :

Multi-pitch streaming overview!!

[1] Jen-Yu Liu, Yi-Hsuan Yang, and Shyh-Kang Jeng, "Weakly-supervised visual instrument-playing action detection in videos," IEEE Trans. Multimedia, in press.

[2] Siddharth Gururani, Cameron Summers, and Alexander Lerch, "Instrument activity detection in polyphonic music using deep neural networks," in Proc. ISMIR, 2018.

[3] Yun-Ning Hung and Yi-Hsuan Yang, "Frame-level instrument recognition by timbre and pitch," in Proc. ISMIR ,2018, pp. 135–142.