

Context

Goal:

- Describe variable length videos while preserving their temporal structures
- Capture the granularity of action categories in videos

Methodology:

- Design an aggregation method at different levels of granularity
- Select representations
- Generalize multiple kernel framework on temporal pyramid

Dataset : UCF-101 (split-2)

- 9586 training and 3774 test videos
- 101 actions

UCF-101 dataset (trimmed videos)

Mathematical model

We solve the following constrained minimization problem :

$$\min_{\beta,w,b,\xi = 2} \frac{1}{k,l} \sum_{c} \beta_{k,l} \langle w_{c}^{k,l}, w_{c}^{k,l} \rangle + \sum_{j=1}^{n} \xi_{j}$$

s.t
$$\xi_j = \max_{c' \in \mathscr{C} \setminus c} \mathscr{L}(g_c(\mathscr{V}_j) - g_{c'}(\mathscr{V}_j))$$

- $\beta_{k,l}$: weights of the temporal pyramid
- $\psi_{k,l}(\mathscr{V})$: video representation associated with k-th node and *I*-th level
- $w_{c}^{k,l}$, $\mathcal{L}(.)$: SVM hyperplanes, convex loss function
- $g_c(.)$: SVM associated to action category c

Deep Temporal Pyramid Design for Action Recognition

Ahmed Mazari, Hichem Sahbi

LIP6 CNRS, UMR 7606, UPMC, Sorbonne Université, Paris, France

(D) Multiple Kernel Learning (MKL)

Weights distribution

 $K_{k,l}$: kernels

Results

Setting	Action recognition performance on UCF101
Global average pooling (temporal pyramid root)	66.15%
Temporal pyramid (level 2)	66.74%
Temporal pyramid (level 3)	67.14%
Temporal pyramid (level 4)	67.41%
Temporal pyramid (level 5)	67.45%
Temporal pyramid (level 6)	67.47%
Temporal pyramid + MKL	68.58%
Spectrogram (with resnet-18)	64.41%
	"

Comparison with state-of-the-art

Spect Spect + 3D 2-sti 3D 2-stre 3D 2-strea 3D 2-stream 3D 2-strear 3D 2-stream (m 3D 2-stream (appe 3D 2-stream (cor 3D 2-stream (mot 3D 2-stream (appea 3D 2-stream (comb

Future works

References

[1] C.cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning Kernels based on Centered Alignement. JMLR, 2012 [2] J. Carreira, A. Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR, 2017 [3] V. Choutas, P. Weinzaepfel, J. Revaud, C. Schmid. PoTion: Pose MoTion Representation for Action Recognition. CVPR, 2018 [4] K He, X Zhang, S Ren, J Sun. Deep Residual Learning for Image Recognition. CVPR, 2016

Method	Action recognition performances on UCF101
ol. heatM [3]	64.38%
heatM [3] +TP	77.34%
Spect	64.41%
Spect +TP	68.40%
+ col. heatM [3]	66.87%
col. heatM [3] +TP	74.65%
ream (motion) [2]	96.41%
am (appearance) [2]	95.60%
am (motion) [2] +TP	97.50%
n (appearance) [2] +TP	95.77%
n (combined) [2] +TP	97.94%
otion) [2] + col. heatM [3]	94.89%
earance) [2] + col. heatM [3]	94.32%
nbined) [2] + col. heatM [3]	97.02%
ion) [2] + col. heatM [3] +TP	95.70%
rance) [2] + col. heatM [3] +TP	94.60%
ined) [2] + col. heatM [3] +TP	97.56%

 End-to-end temporal pyramid design Generalization of our hierarchical aggregation method to activity recognition