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Summary

e Goal: Localize multiple sound source positions in a reverberant
real-world environment.

e Problem: Acoustic reflections add confusion to source position.

e Method: Account for reflections by incorporating a harmonic
coupling model of the room transfer function.

e Results: Improved robustness and position estimation.

e Conclusions: Reflections can be helpful when used carefully.

MUSIC Subspace Localization Method

Reverberant Room

e To a sound receiver, each acoustic reflection looks like a
duplicated sound source.

e It 1s difficult to know which source 1s the original when we do
not account for reflections.
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Fig.1 Acoustic reflections and their secondary sound sources

Direct Sound

e Sound incident to the receiver due to the sound source can be
modeled with spherical harmonics.
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Measured Sound Field Model

e Measurements consider direct sound and noise.

e Reflections are observed as noise.
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Noise Subspace

e Noise subspace 1s found from covariance of measured sound.
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Harmonic MUSIC
e Source position 1s estimated with a MUSIC algorithm [1,2].
1
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e Steering vector 1s orthogonal to the noise subspace when it points
to a sound source.

e Sources appear as peaks in the MUSIC spectra plot.

Simulation

e 4 x 6 X 3 m reverberant shoebox room by image source method.
e Source positions:
1) (0.4m, 60°, 50°)
2) (0.8m, 120°, 300°)

3) (0.8m, 140°, 320°)
4) (1.0m, 60°, 50°)

Source Localization Without Modeling Reflections
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Fig.2 MUSIC spectra without modeling reflections

e Identifies two sound sources.

e Unable to uniquely distinguish nearby sources 2 & 3.

e Cannot radially separate same angular sources 1 & 4.
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Proposed Localization Method

Source Localization With Modeled Reflections
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e We propose a localization method that models the direct sound o
and reflected sound components with spherical harmonics. B 10
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e Reflections are modeled and incorporated with harmonic room = | 2,

transfer function coupling coefficients [3].
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Room Coupling Model

e Direct sound incident to the receive region is given by W (k). PP pyrey

e Indirect sound emitted from the source region is given by 3(k).

(0.8m, 120°, 302°) -9 (1.0m, 60°, 51°)
e Reflected sound is given by the room coupling coefficients a (k). 10 1 I
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Fig.4 MUSIC spectra of proposed method

e Radial focusing confirms no sources at 0.6 m.

Fig.3 Acoustic regions e Able to uniquely distinguish nearby sources 2 & 3.

e Can radially separate and 1dentify same angular sources 1 & 4.
Parameterization of the Room Transfer Function

e RTF between regions of arbitrarily positioned or moving sources Robustness Against Reflection

and receivers can be parameterized with spherical harmonics.

e Room characteristics are given by coupling coefficients a (k)
that are independent of source/receiver position.

e Coupling coefficients can be modeled or measured once for any
arbitrary real-world environment [3, 4].
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steering vector A (k) e Sources are localized in highly reflective environments, b = 0.9
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