


Jen-Tzung Chien and Chun-Wei Wang, National Chiao Tung University, Hsinchu, Taiwan

- collapse in sequence generation
- ferent networks
- long short-term memory (LSTM)
- pyramid bidirectional LSTM (pBLSTM)
- tic sequence autoencoder

- information to reconstruct the input signal ${f x}$
- bound of log likelihood

- construction of a sequence data
- of input sequence \mathbf{x}

VARIATIONAL AND HIERARCHICAL RECURRENT AUTOENCODER

archical Model	Experiment	 Experimental setup 				
		-	built by	using IST	-M lane	
	 baseline system was built by using LSTM lang (denoted by RNNLM) 					
	 VRAE and hierarchical VRAE were carried or 				ed out v	
	and docoder					
	one-layer LSTM as both encoder and decoder					
	embedding size 300 and hidden units of size 25					
\mathbf{x}_T \mathbf{z}_g	 hierarchical VRAE additionally employed 					
	⊳ three-la	three-layer pBLSTM with 256 hidden units				
\uparrow \mathbf{x}_T	 training settings and evaluation metrics 					
1	▷ Penn TreeBank (PTB) ($ V = 10K$) & Yelp 2					
\mathbf{x}_T		ch size 32, 20	•			
, / 1		optimizer, dro				
\mathbf{x}_{T-1}	⊳ negativ	e log-likelihoo	d (NLL	_), KL diver	gence,	
		Model	NLL	$\mathrm{KL}\left(\mathbf{z}_{g},\mathbf{z}_{l}\right)$	PPL	
memory		RNNLM VRAE	102.27 101.45	- 4.86	132.89 127.78	
ptures the local features ${f h}$ in		Hierarchical VRAE	99.28	7.25 (4.40, 2.85)	115.17	
idirectional LSTM	Table 1	l: Comparison of	differen	t methods und	er PTB da	
, $[\mathbf{h}_{2n}^{(l-1)}, \mathbf{h}_{2n+1}^{(l-1)}])$		Model	NLL	$\operatorname{KL}\left(\mathbf{z}_{g},\mathbf{z}_{l}\right)$	PPL	
		RNNLM VRAE	196.69 196.28	2.25	62.91 62.38	
\mathbf{x} is yielded by		Hierarchical VRAE	192.25	6.44 (4.66, 1.78)	57.30	
$p(\mathbf{z}_l)p(\mathbf{z}_g)d\mathbf{z}_ld\mathbf{z}_g$	Table 2	2: Comparison of	differen	t methods und	ler Yelp d	
eration	mr. wathe	en who says pinkerto	n's had a l	loss of nearly \$ N	million in I	
$(\mu_x, \operatorname{diag}(\sigma_x^2))$	ameri	can brands boasts th	at he's ma	ade pinkerton 's p	orofitable ag	
latent variables	mr. $<$ unk $>$ said he was pleased with his estimate of N N in N and N N is N after mr. $<$ unk $>$'s departure					
$\mathbf{z}_{g}, \mathbf{x}) q_{\phi}(\mathbf{z}_{g} \mathbf{x})$	in addition the company's <unk> business is n't being acquired by <unk>'s stock market share</unk></unk>					
sed hierarchical VRAE can be	in the past two months mr. $<$ unk $>$ said he expects to report a loss of N					
find	in the first nine months of N shares of N N and a nominal N N the dow jones industrial average fell N points to N					
	in when-issued trading the notes were quoted at a price to yield					
$\mathbf{z}_l, \mathbf{z}_g) p(\mathbf{z}_l) p(\mathbf{z}_g) \Big\rangle_{d\mathbf{z}_l d\mathbf{z}_l}$	Linear interpolation of two sentences					
$\frac{\mathbf{z}_l, \mathbf{z}_g) p(\mathbf{z}_l) p(\mathbf{z}_g)}{q_{\phi}(\mathbf{z}_l, \mathbf{z}_g \mathbf{x})} \int d\mathbf{z}_l d\mathbf{z}_g$						
$p(\mathbf{z}_l)p(\mathbf{z}_g)$		Cor	nclu	sions		
$q_{\phi}(\mathbf{z}_{g} \mathbf{x}) $	We employ	• We employed a LSTM and a pyramid bidirection				
$\mathcal{D}_{KL}\left(q_{\phi}(\mathbf{z}_{g} \mathbf{x}) p(\mathbf{z}_{g})\right)$	encoders to	• We employed a LSTM and a pyramid bidirection encoders to characterize global and local variables,				
$ = \mathcal{L}(\mathbf{x}; \mathbf{ heta}, \phi) $						
on error	proved the	 The proposed method mitigated the posterior collar proved the prediction performance for sentence get 				
L divergence due to local vari-	A stochasti	ic and hierarch	nical lat	tent represe	ntations	
	 Document summarization is now under investigation 					

nguage model with encoder

256 **2013 (**15*K***)** ion 16 ealing perplexity

dataset.

dataset.

N under again

in

N million

I N N

nal LSTM as s, respectively lapse and imeneration s was learned

gation