

Graduate Institute of Electronics Engineering, NTU



#### **2019 ICASSP**

#### Low-complexity Recurrent Neural Network-based Polar Decoder with Weight Quantization Mechanism

Speaker: Chieh-Fang (Jeff) Teng Email: jeff@access.ee.ntu.edu.tw Advisor: Prof. An-Yeu (Andy) Wu Date: 2019/05/14





## Outline

#### Polar code

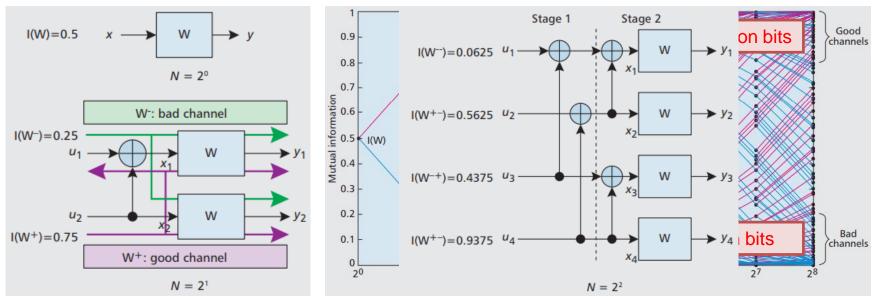
- Encoding
- Decoding: belief propagation
- Neural network polar decoder
- Motivation and proposed approach
  - Recurrent architecture
  - Codebook-based weight quantization
- Simulation results and analysis
- Conclusion





#### Polar Code [1-2]

- Proposed by Arikan in 2009 with provable achievement of Shannon capacity given binary input discrete memoryless channel (B-DMC)
- Channel polarization
  - Matthew effect
  - With recursive implementation, good channels get better and the bad ones get worse







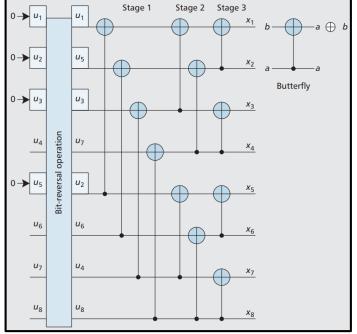
## Polar Code: Encoding

- Code length:  $N = 2^n$ , n = 1, 2, ...
- Information length: K
- Code rate: R = K/N
- Frozen bits: N K fixed value of zeros known both by encoder and decoder  $stage 1 \quad stage 2 \quad stage 3$

$$\mathbf{*} \ \mathbf{x}^N = \mathbf{u}^N \mathbf{G}_N = \mathbf{u}^N \mathbf{F}_2^{\otimes n} \mathbf{B}_N$$

- Codeword:  $x^N$
- Binary source block:  $\boldsymbol{u}^N = (u_1, u_2, \dots, u_N)$
- Generator matrix:  $\boldsymbol{G}_N = \boldsymbol{F}_2^{\otimes n} \boldsymbol{B}_N$
- ♦  $F_2^{\otimes n}$ : *n*-th Kronecker power of  $F_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

•  $B_N$ : bit-reversal permutation matrix







#### Polar Code [1-9]

- Architecture flexibility
- Multi-code rate support
- Low cost of implementation



- Meet 5G communication protocol and adopted by 3GPP in 2016 for short codes used in control channel
- Other applications: error correction code in flash memory
- Decoding algorithm: successive cancelation and belief propagation [3-9]

|             | Successive Cancelation (SC) | Belief Propagation (BP) |
|-------------|-----------------------------|-------------------------|
| Performance | High                        | Low                     |
| Complexity  | Low                         | High                    |
| Latency     | High                        | Low                     |
| Throughput  | Low                         | High                    |

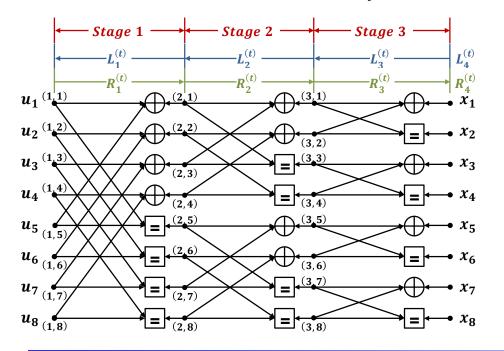




## **Polar Code: Belief Propagation** [8]

- Message passing algorithm for decoding
- $\diamond$  Iterative processing over the factor graph of (N, K) polar code

• Right-to-left message:  $L_{i,i}^{(t)}$ , *j*-th node at the *i*-th stage



Unified scaled min-sum with  $\alpha = 0.9375$  $\left(L_{i,i}^{(t)} = \alpha q \left(L_{i,1,i}^{(t-1)} L_{i,1,i}^{(t-1)} + R_{i,1,i}^{(t)}\right)\right)$ 

$$L_{i,j+N/2^{i}}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)} \right) + L_{i+1,j+N/2^{i}}^{(t-1)}$$

$$R_{i+1,j}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \right)$$

$$R_{i+1,j+N/2^{i}}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)} \right) + R_{i,j+N/2^{i}}^{(t)}$$

 $g(x, y) \approx \operatorname{sign}(x)\operatorname{sign}(y)\min(|x|, |y|)$ 



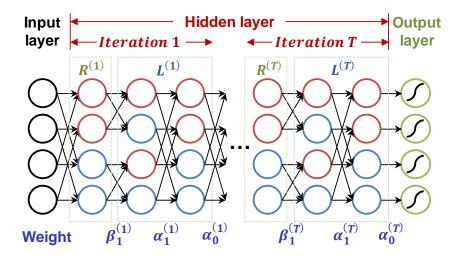


#### Multiple Scaled Belief Propagation [10]

- Neural network-based BP: take advantage of the structure of belief propagation decoding
- Outperform conventional algorithm within fewer iterations

Unified scaled min-sum with  $\alpha = 0.9375$ 

$$\begin{cases} L_{i,j}^{(t)} = \alpha g \left( L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \right) \\ L_{i,j+N/2^{i}}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)} \right) + L_{i+1,j+N/2^{i}}^{(t-1)} \\ R_{i+1,j}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \right) \\ R_{i+1,j+N/2^{i}}^{(t)} = \alpha g \left( R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \right) \end{cases}$$



 $\begin{aligned} & \text{Multiple scaled min-sum} \\ & L_{i,j}^{(t)} = \alpha_{i,j}^{(t)} g\left(L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)}\right) \\ & L_{i,j+N/2^{i}}^{(t)} = \alpha_{i,j+N/2^{i}}^{(t)} g\left(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}\right) + L_{i+1,j+N/2^{i}}^{(t-1)} \\ & R_{i+1,j}^{(t)} = \beta_{i+1,j}^{(t)} g\left(R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)}\right) \\ & R_{i+1,j+N/2^{i}}^{(t)} = \beta_{i+1,j+N/2^{i}}^{(t)} g\left(R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)}\right) \end{aligned}$ 

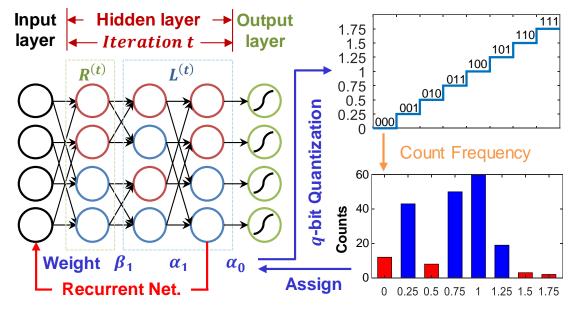
General case when  $\alpha \& \beta = 0.9375 \Rightarrow$  no worse performance





### Proposed Recurrent Architecture with Codebook-based Weight Quantization

- ✤ Multiple scaled min-sum induces additional memory overhead for weight storage → hinder the deployment of neural network decoder
- Massive multiplication on edges results in additional complexity



- ✤ Recurrent architecture → dramatically reduces memory overhead
- Codebook-based weight quantization alleviates complexity





#### **Recurrent Architecture** [11]

- Force the network to reuse shared weights among different iteration
- Recurrent architecture leads to a different optimization problem
  - Dramatically reduce memory overhead with a little performance degradation

$$\begin{cases} L_{i,j}^{(t)} = \alpha_{i,j}^{(t)} g\left(L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)}\right) \\ L_{i,j+N/2^{i}}^{(t)} = \alpha_{i,j+N/2^{i}}^{(t)} g\left(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}\right) + L_{i+1,j+N/2^{i}}^{(t-1)} \\ R_{i+1,j}^{(t)} = \beta_{i+1,j}^{(t)} g\left(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}\right) + R_{i,j+N/2^{i}}^{(t)} \\ R_{i+1,j+N/2^{i}}^{(t)} = \alpha_{i,j} g\left(L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \\ L_{i,j+N/2^{i}}^{(t)} = \alpha_{i,j} g\left(L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \\ R_{i+1,j}^{(t)} = \beta_{i+1,j} g\left(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}\right) + L_{i+1,j+N/2^{i}}^{(t-1)} \\ R_{i+1,j}^{(t)} = \beta_{i+1,j} g\left(R_{i,j}^{(t)}, L_{i+1,j+N/2^{i}}^{(t-1)} + R_{i,j+N/2^{i}}^{(t)} \\ R_{i+1,j+N/2^{i}}^{(t)} = \beta_{i+1,j+N/2^{i}} g\left(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}\right) + R_{i,j+N/2^{i}}^{(t)} \\ R_{i+1,j+N/2^{i}}^{(t)} = \beta_{i+1,j+N/2^{i}}^{(t)} \\ R_{i+1,j+N/2^{i}}^{(t)} = \beta_{i+1,j+N/2^{i}}^{(t)} \\ R_{i+1,j+N/2^{i}}^{(t)}$$





# Codebook-based Weight Quantization [12-13]

- Weights are quantized after each epoch during the training process
- Double quantization: reduce both the required number of weights and the precision for each weights
- Scaling parameters are close to 1  $\rightarrow$  *q*-bit quantization with step =  $2^{-(q-1)}$
- **\diamond** Design *c*-bit codebook by counting the frequency  $\rightarrow$  reduce *q*-bit to *c*-bit

| 0.78                                                   | 0.56 | 0.95 | 1.02 | (a)                           |      | 0.75 | 0.50 | 1.00 | 1.00 | (b)<br>Count<br>Frequency   | Value <sub>(2)</sub> | Value <sub>(10)</sub> | Count<br>Freq. | Codebook<br>Index |
|--------------------------------------------------------|------|------|------|-------------------------------|------|------|------|------|------|-----------------------------|----------------------|-----------------------|----------------|-------------------|
| 0.45                                                   | 0.35 | 0.94 | 1.66 | <i>q</i> -bit<br>Quantization | 0.50 | 0.25 | 1.00 | 1.75 | 000  |                             | 0.00                 | 1                     |                |                   |
| 1.22                                                   | 0.81 | 1.47 | 1.16 |                               | 1.25 | 0.75 | 1.50 | 1.25 |      |                             |                      |                       |                |                   |
| 0.12                                                   | 0.99 | 1.28 | 0.72 |                               | 7    | 0.00 | 1.00 | 1.25 | 0.75 |                             | 001                  | 0.25                  | 1              |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |      |      |      |                               |      |      | 010  | 0.50 | 2    | 00                          |                      |                       |                |                   |
| Original Weights (32bit)                               |      |      |      |                               |      |      |      | 011  | 0.75 | 3                           | 01                   |                       |                |                   |
|                                                        |      |      |      |                               | 01   | 00   | 10   | 10   |      | (c)                         | 100                  | 1.00                  | 4              | 10                |
|                                                        |      |      |      |                               | 00   | 00   | 10   | 11   | Code | <i>c</i> -bit<br>book-based | 101                  | 1.25                  | 3              | 11                |
|                                                        |      |      |      |                               | 11   | 01   | 11   | 11   | Qu   | antization                  | 110                  | 1.50                  | 1              |                   |
|                                                        |      |      |      |                               | 00   | 10   | 11   | 01   |      | (c = 2)                     | 111                  | 1.75                  | 1              |                   |



#### Simulation Results: Performance of DNN-BP and RNN-BP

| Parameter                                | Setups        |
|------------------------------------------|---------------|
| Encoding                                 | Polar (64,32) |
| SNR                                      | 0 ~ 5         |
| Training codewords/SNR                   | 40000         |
| Testing codewords/SNR                    | 100800        |
| Mini-batch size                          | 2400          |
| <ul> <li>Five iteration is an</li> </ul> |               |

- Five iteration is enough for convergence
- RNN-BP has almost the same performance as DNN-BP and reduces memory overhead by 80%



#### Simulation Results: Performance of BP and RNN-BP

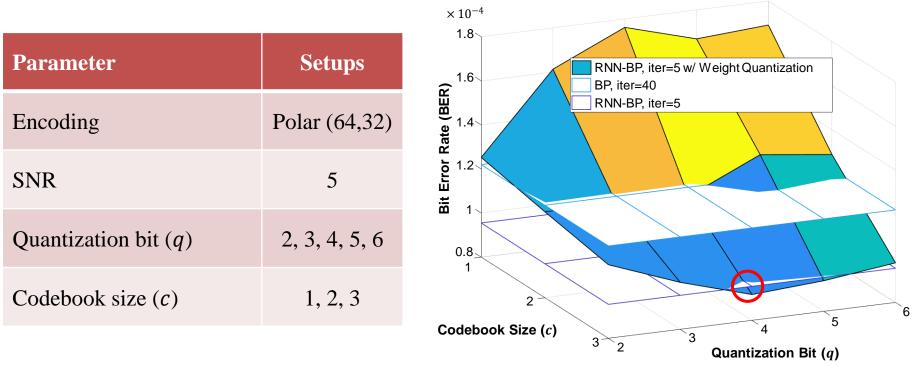
|                        |               | <b>Polar (64,32)</b>                                                                                                                                                             |  |  |  |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter              | Setups        |                                                                                                                                                                                  |  |  |  |
| Encoding               | Polar (64,32) | $10^{-1}$                                                                                                                                                                        |  |  |  |
| SNR                    | 0 ~ 5         | Rate (BEK)                                                                                                                                                                       |  |  |  |
| Training codewords/SNR | 40000         | Bit Eror R                                                                                                                                                                       |  |  |  |
| Testing codewords/SNR  | 100800        | $\overrightarrow{\mathbf{D}}^{4} = \overrightarrow{\mathbf{BP}}, \text{ iter=5}$ $\overrightarrow{\mathbf{BP}}, \text{ iter=10}$ $\overrightarrow{\mathbf{BP}}, \text{ iter=20}$ |  |  |  |
| Mini-batch size        | 2400          | $10^{-5}$ BP, iter=40                                                                                                                                                            |  |  |  |
|                        |               | 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br><b>E<sub>b</sub>/N<sub>0</sub> (dB)</b>                                                                                                       |  |  |  |

RNN-BP with 5 iteration outperforms conventional BP with 40 iteration

➔ Reduce latency and complexity with higher throughput



## Simulation Results: Performance of Weight Quantization



- ♦ When  $c \leq 2$ , longer bit length may result in local minimum
- When c > 2, longer bit length has lower BER
- Codebook size higher than 1 can outperform conventional BP





#### **Complexity Analysis**

|                                                               | Addition                            | Multiplication                     | Memory (bit)                          |
|---------------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------|
| Conventional BP [7]                                           | 2 <i>TN</i> log <i>N</i><br>~30,720 | 0                                  | 0                                     |
| DNN-BP [10]                                                   | 2 <i>TN</i> log <i>N</i><br>~3,840  | 2 <i>TN</i> log <i>N</i><br>~3,840 | 64 <i>TN</i> log <i>N</i><br>~122,880 |
| Proposed RNN-BP with<br>codebook-based weight<br>quantization | 2 <i>qTN</i> logN<br>~15,360        | 0                                  | 2 <i>cN</i> log <i>N</i><br>~2,304    |

\*Iterations T for BP, DNN-BP, and RNN-BP are set to 40, 5, and 5, respectively. N = 64, q = 4, c = 3

- DNN-BP dramatically reduces the addition operations at the expense of significant memory overhead
- Proposed approach reduces memory overhead by 98% and replaces multiplication with shift and addition without visible performance loss





#### Conclusion

- Proposed recurrent architecture can learn the shareable parameters with effective reduction of memory overhead by 80%
- Proposed codebook-based weight quantization can further reduce memory overhead by 90% and alleviate hardware complexity
- Our proposed design is low complexity, low latency and high throughput; while being feasible for realizing neural network decoders in communication systems





## Reference (1/2)

[1] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] K. Niu, K. Chen, J. Lin, Q. T. Zhang, "Polar Codes: Primary Concepts and Practical Decoding Algorithms," *IEEE Communication Magazine*, vol. 52, no. 7, pp. 192-203, Jul. 2014.

[3] "Final report of 3GPP TSG RAN WG1 #87 v1.0.0," Reno, USA, Nov. 2016.

[4] A. Alamdar-Yazdi and F. R. Kschischang, "A simplified successive cancellation decoder for polar codes," *IEEE Commun. Lett.*, vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

[5] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, "Hardware architectures for successive cancellation decoding of polar codes," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)*, pp. 1665–1668, May 2011.

[6] E. Arikan, "Polar codes: A pipelined implementation," in *Proc. 4th Int. Symp. on Broad. Commun. ISBC 2010*, pp. 11-14, July 2010.

[7] A. Pamuk, "An FPGA implementation architecture for decoding of polar codes," in *International Symposium on Wireless Communication Systems (ISWCS)*, Nov 2011.

[8] B. Yuan and K. K. Parhi, "Architecture optimizations for BP polar decoders," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)*, May 2013.

[9] B. Yuan and K.K. Parhi, "Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders," *IEEE Trans. Signal Process.*, vol.62, no.24, pp.6496–6506, Dec.15, 2014.





#### Reference (2/2)

[10] W. Xu, Z. Wu, Y.-L. Ueng, X. You, C. Zhang, "Improved polar decoder based on deep learning," *Proc. IEEE International Workshop on Signal Processing Systems (SiPS)*, pp. 1-6, Oct. 2017.

[11] E. Nachmani, E. Marciano, L. Lugosch, W. Gross, D. Burshtein and Y. Be'ery, "Deep Learning Methods for Improved Decoding of Linear Codes," *IEEE Journal of Selected Topics in Signal Processing*, vol. 12, no. 1, pp. 119-131, 2018.

[12] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, "Quantized neural networks: Training neural networks with low precision weights and activations," *CoRR*, 2016.

[13] S. Han, H. Mao, and W. J. Dally, "Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding," *International Conference on Learning Representations*, 2016.





# The end Thank you for your listening