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Polar Code

 Proposed by Arikan in 2009 with provable achievement of Shannon 

capacity given binary input discrete memoryless channel (B-DMC)

 Channel polarization

 Matthew effect

 With recursive implementation, good channels get better and the bad ones 

get worse

[1-2]

Information bits

Frozen bits
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Polar Code: Encoding

 Code length: 𝑁 = 2𝑛, 𝑛 = 1, 2, …

 Information length: 𝐾

 Code rate: 𝑅 = 𝐾/𝑁

 Frozen bits: 𝑁 − 𝐾 fixed value of zeros known both by encoder and 

decoder

 𝒙𝑁 = 𝒖𝑁𝑮𝑁 = 𝒖
𝑁𝑭2

⊗𝑛𝑩𝑁
 Codeword: 𝒙𝑁

 Binary source block: 𝒖𝑁 = 𝑢1, 𝑢2, … , 𝑢𝑁

 Generator matrix: 𝑮𝑁 = 𝑭2
⊗𝑛𝑩𝑁

 𝑭2
⊗𝑛

: 𝑛-th Kronecker power of 𝑭2 =
1 0
1 1

 𝑩𝑁: bit-reversal permutation matrix
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Polar Code

 Architecture flexibility

 Multi-code rate support

 Low cost of implementation

 Meet 5G communication protocol and adopted by 3GPP in 2016 for 

short codes used in control channel

 Other applications: error correction code in flash memory

 Decoding algorithm: successive cancelation and belief propagation

Successive Cancelation (SC) Belief Propagation (BP)

Performance High Low

Complexity Low High

Latency High Low

Throughput Low High

[1-9]

[3-9]

HUAWEI QualcommFrance
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Polar Code: Belief Propagation

 Message passing algorithm for decoding

 Iterative processing over the factor graph of 𝑁,𝐾 polar code

 Left-to-right message: 𝑅𝑖,𝑗
(𝑡)
, 𝑗-th node at the 𝑖–th stage

 Right-to-left message: 𝐿𝑖,𝑗
(𝑡)
, 𝑗−th node at the 𝑖–th stage

Unified scaled min-sum

with 𝛼 = 0.9375

𝑔 𝑥, 𝑦 ≈ sign 𝑥 sign 𝑦 min( 𝑥 , 𝑦 )

ො𝑢𝑗
𝑁 = ቐ

0, 𝑖𝑓𝐿1,𝑗
𝑇 ≥ 0

1, 𝑖𝑓𝐿1,𝑗
𝑇 < 0

[8]
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𝐿𝑖,𝑗
𝑡 = 𝛼𝑔 𝐿𝑖+1,𝑗

𝑡−1 , 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼𝑔 𝑅𝑖,𝑗
𝑡 , 𝐿𝑖+1,𝑗

𝑡−1 + 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

𝑅𝑖+1,𝑗
𝑡 = 𝛼𝑔 𝑅𝑖,𝑗

𝑡 , 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑅
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼𝑔 𝑅𝑖,𝑗
𝑡 , 𝐿𝑖+1,𝑗

𝑡−1 + 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡
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Multiple Scaled Belief Propagation

 Neural network-based BP: take 

advantage of the structure of 

belief propagation decoding

 Outperform conventional 

algorithm within fewer iterations

General case when 𝛼 & 𝛽 = 0.9375 no worse performance

Unified scaled min-sum with 𝛼 = 0.9375 Multiple scaled min-sum

𝐿𝑖,𝑗
𝑡
= 𝛼𝑔 𝐿𝑖+1,𝑗

𝑡−1
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝐿

𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

𝑅𝑖+1,𝑗
𝑡

= 𝛼𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑅
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝑅

𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿𝑖,𝑗
𝑡
= 𝛼𝑖,𝑗

𝑡
𝑔 𝐿𝑖+1,𝑗

𝑡−1
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝐿

𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

𝑅𝑖+1,𝑗
𝑡

= 𝛽𝑖+1,𝑗
𝑡
𝑔 𝑅𝑖,𝑗

𝑡
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑅
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛽
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝑅

𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

[10]
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Proposed Recurrent Architecture with 

Codebook-based Weight Quantization
 Multiple scaled min-sum induces additional memory overhead for 

weight storage  hinder the deployment of neural network decoder

 Massive multiplication on edges results in additional complexity

 Recurrent architecture  dramatically reduces memory overhead

 Codebook-based weight quantization alleviates complexity
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Recurrent Architecture

 Force the network to reuse shared weights among different iteration

 Recurrent architecture leads to a different optimization problem

 Dramatically reduce memory overhead with a little performance degradation

𝐿𝑖,𝑗
𝑡
= 𝛼𝑖,𝑗

𝑡
𝑔 𝐿𝑖+1,𝑗

𝑡−1
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝐿

𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

𝑅𝑖+1,𝑗
𝑡

= 𝛽𝑖+1,𝑗
𝑡
𝑔 𝑅𝑖,𝑗

𝑡
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑅
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛽
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝑅

𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿𝑖,𝑗
𝑡
= 𝛼𝑖,𝑗𝑔 𝐿𝑖+1,𝑗

𝑡−1
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝐿
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛼𝑖,𝑗+ Τ𝑁 2𝑖𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝐿

𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

𝑅𝑖+1,𝑗
𝑡

= 𝛽𝑖+1,𝑗𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡−1

+ 𝑅
𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

𝑅
𝑖+1,𝑗+ Τ𝑁 2𝑖
𝑡

= 𝛽𝑖+1,𝑗+ Τ𝑁 2𝑖𝑔 𝑅𝑖,𝑗
𝑡
, 𝐿𝑖+1,𝑗

𝑡−1
+ 𝑅

𝑖,𝑗+ Τ𝑁 2𝑖
𝑡

[11]
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Codebook-based Weight Quantization

 Weights are quantized after each epoch during the training process

 Double quantization: reduce both the required number of weights and    

the precision for each weights

 Scaling parameters are close to 1  𝑞-bit quantization with step = 2−(𝑞−1)

 Design 𝑐-bit codebook by counting the frequency reduce 𝑞-bit to 𝑐-bit

(𝒄 =  )

( =  )

[12-13]
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 Five iteration is enough for convergence

 RNN-BP has almost the same performance as DNN-BP and reduces 

memory overhead by 80%

Simulation Results:

Performance of DNN-BP and RNN-BP

Parameter Setups

Encoding Polar (64,32)

SNR 0 ~ 5

Training codewords/SNR 40000

Testing codewords/SNR 100800

Mini-batch size 2400
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 RNN-BP with 5 iteration outperforms conventional BP with 40 iteration

 Reduce latency and complexity with higher throughput 

Simulation Results:

Performance of BP and RNN-BP

Parameter Setups

Encoding Polar (64,32)

SNR 0 ~ 5

Training codewords/SNR 40000

Testing codewords/SNR 100800

Mini-batch size 2400
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 When 𝑐 ≤ 2, longer bit length may result in local minimum

 When 𝑐 > 2, longer bit length has lower BER

 Codebook size higher than 1 can outperform conventional BP 

Simulation Results:

Performance of Weight Quantization

Parameter Setups

Encoding Polar (64,32)

SNR 5

Quantization bit (𝑞) 2, 3, 4, 5, 6

Codebook size (𝑐) 1, 2, 3
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 DNN-BP dramatically reduces the addition operations at the expense 

of significant memory overhead

 Proposed approach reduces memory overhead by 98% and replaces 

multiplication with shift and addition without visible performance loss

Complexity Analysis

Addition Multiplication Memory (bit)

Conventional BP [7]
2𝑇𝑁log𝑁
~30,720

0 0

DNN-BP [10]
2𝑇𝑁log𝑁
~3,8 0

2𝑇𝑁log𝑁
~3,8 0

6 𝑇𝑁log𝑁
~122,880

Proposed RNN-BP with 

codebook-based weight 

quantization

2𝑞𝑇𝑁log𝑁
~15,360

0
2𝑐𝑁log𝑁
~2,30 

*Iterations 𝑇 for BP, DNN-BP, and RNN-BP are set to 40, 5, and 5, respectively. 𝑁 = 6 , 𝑞 =  , 𝑐 = 3
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Conclusion

 Proposed recurrent architecture can learn the shareable parameters 

with effective reduction of memory overhead by 80%

 Proposed codebook-based weight quantization can further reduce 

memory overhead by 90% and alleviate hardware complexity

 Our proposed design is low complexity, low latency and high 

throughput; while being feasible for realizing neural network decoders 

in communication systems
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The end

Thank you for your listening
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