
Framing MIR Tasks as Harmonic Disllaon / Addion

►Within Music Informaon Retrieval (MIR), prominent tasks — including 
pitch-tracking, source-separaon, super-resoluon, and synthesis — typically 
call for specialised methods, despite their similaries. Condional Generave 
Adversarial Networks (cGANs) have been shown to be highly versale in learn-
ing general image-to-image translaons, but have not yet been adapted across 
MIR. In this work, we present an end-to-end supervisable architecture to per-
form all aforemenoned audio tasks, consisng of a WaveNet synthesiser con-
dioned on the output of a jointly-trained cGAN spectrogram translator. In 
doing so, we demonstrate the potenal of such flexible techniques to unify MIR 
tasks, promote efficient transfer learning, and converge research to the im-
provement of powerful, general methods. Finally, to the best of our knowledge, 
we present the first applicaon of GANs to guided instrument synthesis.

Abstract Overview of the GAN-WN Architecture

►We modelled the solo violin for three reasons. One, forming ‘deep’ models for each task was infeasi-
ble with our resources. Two, the violin is notoriously hard to model due to its expressive range, serving 
as a proof-of-concept for other instruments. Three, we expected it to facilitate joint modelling of tasks.

►For F0-tracking and synthesis tasks, we created paired sine-wave and violin audio tracks using so-
ware instruments and data from the Bach10 dataset. For super-resoluon, we quarter-sampled over 
12 hours of live violin recordings to generate the lofi track. For source-separaon, we used mul-track 
recordings from the Bach10, Freischutz, and Phenicx-anechoic datasets, and created our own synthec 
data using MIDI files of Bach’s Four Orchestral Suites played through soware instruments. 

►►Tracks were 16 kHz as standard, as the spectrum becomes increasingly sparse in frequencies cap-
tured by higher rates (i.e expensive diminishing returns). Once finalised, tracks were compressed and 
normalised, segmented, and processed via the short-me Fourier transform (STFT). We mel-scaled all 
data to model for human frequency percepon, and reclaim memory for larger kernels and layers.

Data and Representaon

►Our method extends pix2pix in order to fit a translaon model to each of our datasets of paired 
spectrograms. In each case, once generator G is properly trained, tesng becomes a maer of convert-
ing audio of arbitrary length to its mel-spectrogram representaon and applying G convoluonally.

►We also trained a joint model by increasing the input channels of our cGAN, and noced increased 
performance in fewer iteraons, suggesng that kernels were shared efficiently between tasks.

►We reconstructed spectrograms in the following 3 ways: 
 ♣ GAN-V: Griffin-Lim. Displayed noceable arfacts due to mel-scaling compression.
  ♠ GAN-S and S2: Secondary cGAN/s & Griffin Lim, improving rescaling from mel to linear.
 ♦ GAN-WN: WaveNet locally-condioned on spectrograms, circumvenng lossy rescaling.

►We trained one WaveNet model on the task that had the most available data (super-resoluon). By 
par oning into equal test and train (~6 hours of audio each), our cGAN produced 6 hours of spectro-
grams from unseen data, which were then paired with their ground truth audio in order to train 
WaveNet. In doing so, we train GAN-WN as a cascade architecture, making the reconstrucon stage 
more robust to translaon errors. Memory resources for WaveNet limited training instances to ~30k
steps, or 1.9s in duraon, which suited the 1.6s chunk size represented by our datasets.

Translaon and Reconstrucon

►We evaluated on the bases of spectrogram distance as well as human audion. We report both % 
error (normalised L1) as well as structural similarity (SSIM). We also hosted an APE-style audion test, 
tasking parcipants to audion sets of clips and assess them against both a Likert scale, and each other.

►►Our baselines were as follows: Pitch-tracking was compared with Ableton Live 9’s audio-to-MIDI 
funcon, source-separaon with non-negave matrix factorisaon (NMF) and pre-trained CNN, su-
per-resoluon with linear and cubic interpolaon, and synthesis purely by ablaon. There are more 
recent baselines for many of these tasks; note that we don’t aim to overtake states-of-the-art, rather, 
our goal is to sufficiently demonstrate our approach’s overall capability. 

►►We report compe ve performance with our chosen baselines, as shown below with spectrograms 
as a visual guide to procedures and outcomes. We believe our findings advocate for further research 
towards generalisable methods such as ours, given their flexibility; a breakthrough to such an archi-
tecture could mean wide-reaching effects to mulple tasks in MIR.
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