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P We evaluated on the bases of spectrogram distance as well as human audition. We report both %
P Within Music Information Retrieval (MIR), prominent tasks — including error {(normalised L1) as well as structural similarity {SSIM). We also hosted an APE-style audition test,

pitch-tracking, source-separation, super-resolution, and synthesis — typically Input waveform CGAN autoencoder Qutput waveform tasking participants to audition sets of clips and assess them against both a Likert scale, and each other.
call for specialised methods, despite their similarities. Conditional Generative @ (task specific) M
Adversarial Networks {cGANs) have been shown to be highly versatile in learn- A B P Our baselines were as follows: Pitch-tracking was compared with Ableton Live 9's audio-to-MIDI
ing general image-to-image translations, but have not yet been adapted across function, source-separation with non-negative matrix factorisation {NMF) and pre-trained CNN, su-
MIR. In this work, we present an end-to-end supervisable architecture to per- per-resolution with linear and cubic interpolation, and synthesis purely by ablation. There are more
form all aforementioned audio tasks, consisting of a WaveNet synthesiser con- recent baselines for many of these tasks; note that we don’t aim to overtake states-of-the-art, rather,
ditioned on the output of a jointly-trained eGAN spectragram translator. In STFT, our goal is to sufficiently demanstrate our approach’s overall capability.

doing so, we demanstrate the potential of such flexible techniques to unify MIR
tasks, promote efficient transfer learning, and converge research to the im- P We report competitive performance with our chasen baselines, as shown below with spectrograms
provement of powerful, general methods. Finally, to the best of our knowledge, WaveNet synthesiser as a visual guide to procedures and outcomes. We believe our findings advocate for further research
we present the first application of GANs to guided instrument synthesis. towards generalisable methods such as ours, given their flexibility; a breakthrough to such an archi-

tecture could mean wide-reaching effects to multiple tasks in MIR.
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% error | 4.21 . K . 2.63 Ableton | 109/130 69.43%
SSIM 0.52 . X . 119/130 97.54%
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D + _@ + > We modelled the solo vialin for three reasons. One, forming ‘deep” models for each task was infeasi-
Many-to-One - -t ble with our resources. Two, the violin is notoriously hard to model due to its expressive range, serving

as a proof-of-concept for other instruments. Three, we expected it to facilitate joint modelling of tasks. Y / ) a anslatio Quantisation LIy

P Far Fy-tracking and synthesis tasks, we created paired sine-wave and violin audio tracks using soft- | | i
ware instruments and data from the Bach10 dataset. For super-resolution, we quarter-sampled over |

12 hours of live violin recordings to generate the lofi track. For source-separation, we used multi-track
recordings from the Bach10, Freischutz, and Phenicx-anechoic datasets, and created our own synthetic
data using MIDI files of Bach’s Four Orchestrol Suites played through software instruments.

HUMAN RATINGS: SUPER-RESOLUTION
F_Tracking PTracks were 16 kHz as standard, as the spectrum becomes increasingly sparse in frequencies cap- C
2 tured by higher rates {i.e expensive diminishing returns). Once finalised, tracks were compressed and
normalised, segmented, and processed via the short-time Fourier transform (STFT). We mel-scaled all
data to model for human frequency perception, and reclaim memory for larger kernels and layers.

P Our method extends pix2pix in order to fit a translation model to each of our datasets of paired
spectrograms. In each case, once generator G is properly trained, testing becomes a matter of convert-
ing audio of arbitrary length to its mel-spectrogram representation and applying G convolutionally.
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P We also trained a joint model by increasing the input channels of our ¢cGAN, and noticed increased

performance in fewer iterations, suggesting that kernels were shared efficiently between tasks.
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W | 7% S8 P We reconstructed spectrograms in the following 3 ways: '
30% | # GAN-V: Griffin-Lim. Displayed noticeable artifacts due to mel-scaling compression.
¥ # GAN-S and S2: Secondary ¢cGAN/s & Griffin Lim, improving rescaling from mel to linear. .
! L + GAN-WN: WaveNet locally-conditioned on spectrograms, circumventing lossy rescaling.
Style Transfer Synthesis P We trained one WaveNet model on the task that had the maost available data {(super-resolution). By
- & partitioning into equal test and train {~6 hours of audio each), our cGAN produced 6 hours of spectro-
grams from unseen data, which were then paired with their ground truth audio in order to train
| WaveNet. In doing so, we train GAN-WN as a cascade architecture, making the reconstruction stage
¥ mare robust to translation errors. Memory resources for WaveNet limited training instances to ~30k
{ steps, or 1.9s in duration, which suited the 1.6s chunk size represented by our datasets.




