Multiple Linear Regression for High Efficiency Video Intra Coding

Zhaobin Zhang*, Yue Li#, Li Li*, Zhu Li* and Shan Liu+

*University of Missouri Kansas City #University of Science and Technology of China +Tencent America

Introduction

- Background
 - 1. The prevalence of video/image capture devices generates more internet traffic which poses new challenge to compress and transmit these content.
 - 2. ISO/IEC MPEG and ITU-T worked together as the Joint Video Exploration Team (JVET) to explore state-of-the-art algorithms and prepare for the nextgeneration video standards.
- Limitations
 - 1. Existing intra prediction schemes of HEVC are not able to characterize the spatial variations due to limited prediction modes.
 - 2. Deep learning methods are better than existing HEVC solution, but often suffer from overwhelming computational complexity which is not tolerable in video codecs.

- ≻ Related work
 - 1. Y. Li [3] proposed to jointly predict current block by combining intra block copy and existing directional prediction scheme.
 - 2. C. Noel [5] developed a regression-based intra prediction scheme by iteratively refining predictors through regularized regression.
 - 3. Y. Li [7] proposed a CNN for HEVC intra coding following a down-sample up-sample pipeline.
- > Proposed
 - 1. We propose a concise design based on Multiple Linear Regression (MLR).
 - 2. The proposed scheme, dubbed MIP, takes both the **reference pixels** and the best **intra prediction** as inputs, and derives the prediction block through a MLR regression model.
 - 3. To refine the model, the **intra prediction direction** is leveraged to fit separate regressors.
 - 4. An average of 0.4% BD-Rate reduction is achieved on HEVC common test sequences.

HEVC Intra Prediction

Fig. 1 HEVC intra prediction modes.

Block-based intra prediction

- 1. DC mode
- 2. Planar mode
- 3. 33 angular modes

Motivated by [8] which incorporates piecewise linear projections, we attempt the potentials by combining interpolation and multiple linear regression.

➢ Formulation

The objective of MLR is to predict the outcome \hat{Y} given the observations X and targets Y. A typical MLR model with k predictor variables:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

where ϵ is the error term, $\Theta = \{\beta_0, \beta_1, \dots, \beta_k\}$ is the coefficient set to be solved for.

➤ Solution

Least square is used to solve the MLR problem.

$$y = X\beta + \epsilon$$
$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Then the estimated value of *y* can be calculated as follows:

$$\hat{y} = X\hat{\beta}$$
$$\epsilon = y - \hat{y}$$

Fig. 2. Framework of MIP scheme. The reference pixels and the best intra prediction are utilized to derive the current block.

➢ Framework

The best intra prediction is obtained through RDO.

2N + 1 reference pixels

Loss function $\mathcal{L} = ||Y - \hat{Y}||_2^2$, $\hat{Y} = XA + b$

Refined Model

UMKC

Separate models w.r.t. prediction direction

$$m = \begin{cases} 0, & \text{if } n = 0\\ 1, & \text{if } n = 1\\ floor\left(\frac{n-2}{3}\right) + 2, \text{if } n > 1 \end{cases}$$

The proposed MIP is integrated into HEVC as an additional intra prediction mode. A flag is transmitted indicating whether it's adopted through RDO.

Environments

- Implemented in HEVC reference software 16.0.
- $\circ \ QP = \{22, 27, 32, 37\}$
- All Intra (AI) configuration under HEVC CTC.
- $\circ~$ Only the 1st frame is used from each sequence.

➤ Training

- Training dataset: cropped blocks from DIV2K.
- Cropped blocks from 800 2k images for training, 100 2k images for validation and test, respectively.
- A separate MIP is trained for each { $block_{size}$, QP, m} combination, therefore $4 \times 4 \times 13 = 208$ models.

Sequence		BD-Rate		
		Y	U	V
Class A	Traffic	-0.9%	-0.6%	-1.3%
	PeopleOnStreet	-0.5%	0.0%	0.1%
	Nebuta	-0.9%	-0.8%	-0.7%
	SteamLocomotive	-0.6%	-0.3%	-0.3%
Class B	Kimono	-0.6%	-1.5%	-1.1%
	ParkScene	-0.6%	-1.1%	-1.0%
	Cactus	-0.7%	-0.3%	-1.1%
	BQTerrace	-0.4%	-1.3%	-0.6%
	BasketballDrive	-1.0%	0.2%	-1.0%
Class C	BasketballDrill	-0.1%	-2.0%	-0.8%
	BQMall	-0.2%	0.1%	-0.4%
	PartyScene	-0.1%	-0.2%	-0.7%
	RaceHorsesC	-0.4%	-0.2%	-0.7%
Class D	BasketballPass	0.1%	1.1%	-0.8%
	BQSquare	0.1%	0.1%	-1.1%
	BlowingBubbles	0.4%	-1.3%	-1.4%
	RaceHorses	-0.3%	-1.6%	0.6%
Class E	FourPeople	-0.4%	0.3%	-1.6%
	Johnny	-0.3%	-1.1%	-1.3%
	KristenAndSara	-0.5%	-0.4%	-0.6%
Class A		-0.7%	-0.5%	-0.5%
Class B		-0.6%	-0.8%	-1.0%
Class C		-0.2%	-0.6%	-0.8%
Class D		0.1%	-0.4%	-0.7%
Class E		-0.4%	-0.4%	-1.2%
Average		-0.4%	-0.6%	-0.8%
Enc Time		487%		
Dec Time		154%		

- An average of -0.4%, -0.6% and 0.8% BD-Rate saving is achieved for
 Y, U, V component, respectively.
- It performs better on high-resolution content, e.g., -0.9% BD-Rate reduction on *Traffic*.

- 1. This paper proposes a new method based on multiple linear regression for high-efficiency video intra coding.
- 2. The proposed scheme MIP, accepts both reference pixels and the best intra prediction and learns an end-to-end projection using a linear regressor.
- 3. The model is fitted in pixel domain which insures the simplicity.
- 4. To refine the model, separate model is trained w.r.t. the intra prediction direction.
- 5. The neat and concise architecture achieves promising gains against HEVC reference software 16.0.

