ALGEBRAICALLY-INITIALIZED EXPECTATION MAXIMIZATION FOR HEADER-FREE COMMUNICATION

Introduction

Figure 1:Example of the long and short data packet.

- It has been a trend to have low latency in wireless communication systems.
- **Example.** URLLC, MM2M [1].
- Transmission latency may be highly suboptimal when applying traditional methods to transmit short packets [2].
- One simple solution is to exclude the header, i.e., • \mathbf{H} in Figure 1.
- Such an exclusion leads to the so-called header-free communication.

Application Context

• Figure 2 depicts an application of header-free communication in massive IoT networks.

Figure 2:IoT networks with header-free communication.

Liangzu Peng, Xuming Song, Manolis C. Tsakiris, Hayoung Choi, Laurent Kneip, and Yuamming Shi School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

Modeling

• each sensor $s_i, i \in \{1, \ldots, m\} =: [m]$ has a corrupted measurement $x_j^* + w_{i,j}$ at time j for $j \in [n]$, where $w_{i,j} \in \mathbb{R}$ is noise.	 Power Sum Polynomials: p_k(z) = Σ^m_{i=1}z^k_i, ∀k ∈ [n]. (5) is permutation invariant: 	(5)
• sensor s_i sends the weighted average $a_{i,1}(x_1 + w_{i,1}) + \dots + a_{i,n}(x_n + w_{i,n})$ (1) to the fusion center, where $a_{i,j}$'s are weights.	• hence	(6)
• the center receives $\tilde{y}_i := \boldsymbol{a}_i^\top \boldsymbol{x}^* + w_i.$ (2)	$p_k(\boldsymbol{A}\boldsymbol{x}^* + \boldsymbol{w}) = p_k(\boldsymbol{\Pi}^*\boldsymbol{y}) = p_k(\boldsymbol{y})$ $\iff p_k(\boldsymbol{A}\boldsymbol{x}^* + \boldsymbol{w}) - p_k(\boldsymbol{y}) = 0.$ • Power Sum Polynomial System $\hat{\mathcal{P}}$:	(7) (8)
• packets sent with headers: $\tilde{y} = Ax^* + w$. (Linear Regression) (3) • header-free communication ($y = \Pi^{\top} \tilde{y}$ received): $\Pi y = Ax^* + w$. (Shuffled Linear Regression) (4)	• (9) is solvable by standard algorithms in computational algebraic geometry, yielding	(9)

Contributions

• a working algorithm for the noisy shuffled linear regression problem for small dimensions (n). • at a complexity linear in the number m of sensors. • suitable for massive IoT sensor networks with header-free communication.

The AIEM Algorithm

Algebraic Initialization. ⊘take the real parts of the roots: $\{(\hat{\boldsymbol{x}}_i)_{\mathbb{R}}\}_{i=1}^L \leftarrow \{a : a + ib \in \{\hat{\boldsymbol{x}}_i\}_{i=1}^L\}.$ (10) **3** extract the most *suitable* one: $\hat{\boldsymbol{x}}_0 \leftarrow \operatorname*{argmin}_{i \in [L]} \{ \min_{\boldsymbol{\Pi}} \| \boldsymbol{\Pi} \boldsymbol{y} - \boldsymbol{A}(\hat{\boldsymbol{x}}_i)_{\mathbb{R}} \|_2 \}.$ (11) Expectation Maximization. • iteratively solve (12) via sorting, and $\mathbf{\Pi}_t \leftarrow \operatorname*{argmin}_{\mathbf{\Pi}} \|\mathbf{\Pi} y - A x_{t-1}\|_2$ (12)• solve (13) via least-squares until convergence. $oldsymbol{x}_t \leftarrow rgmin_{oldsymbol{x} \in \mathbb{R}^n} \| oldsymbol{\Pi}_t oldsymbol{y} - oldsymbol{A} oldsymbol{x} \|_2$ (13)• return the final estimate, say $\boldsymbol{x}_T =: \hat{\boldsymbol{x}}$, for \boldsymbol{x}^* .

Power Sum Polynomial System

Figure 3:Estimation error $100 \times \frac{\|\boldsymbol{x}^* - \hat{\boldsymbol{x}}\|_2}{\|\boldsymbol{x}^*\|_2} \%$.

- H. Choi.

This work was supported in part by the National Nature Science Foundation of China under Grant 61601290 and in part by the Shanghai Sailing Program under Grant 16YF1407700.

Future Work

• Shuffle Linear Regression in high dimension • Extension to other applications, such as • multi-target tracking • genome-assembly

References

[1] K. S. Kim, D. K. Kim, C. Chae, S. Choi, Y. Ko, J. Kim, Y. Lim, M. Yang, S. Kim, B. Lim, K. Lee, and K. L. Ryu. Ultrareliable and low-latency communication techniques for tactile internet services.

Proc. IEEE, pages 1–18, 2018.

[2] G. Durisi, T. Koch, and P. Popovski.

Toward massive, ultrareliable, and low-latency wireless communication with short packets.

Proc. IEEE, 104(9):1711–1726, Sept., 2016.

[3] M. C. Tsakiris, L. Peng, A. Conca, L. Kneip, Y. Shi, and

An algebraic-geometric approach to shuffled linear regression.

ArXiv e-prints, 2018.

[4] Abubakar Abid and James Zou. Stochastic em for shuffled linear regression. arXiv e-print, 2018.

[5] Martin Slawski and Emanuel Ben-David. Linear regression with sparsely permuted data. *Electron. J. Statist.*, 13(1):1–36, 2019.

Acknowledgements

Contact Information

Liangzu Peng

• Email: penglz@shanghaitech.edu.cn

