电子科帔大学
University of Electronic Science and Technology of China

Problems

－Time－of－arrival（TOA）source node self－positioning with unknown clock skew in wireless sensor networks．

Measurements Model \＆Proposed Methods

1 Measurements Model

Ata common time instant t_{0} ，the anchor nodes transmit their signals to the source node．
The local time of the source node，τ ，is related to the reference time（i．e．synchronized anchor nodes＇time），t ，as $\tau=\omega t+\theta$
Where ω is the clock skew of source node and θ is the clock offset of source node． In the line－of－sight propagation conditions，the received TOA measurements in the
source node can be expressed as $[1,2]$ source node can be expressed as $[1,2]$

$$
\tau_{i}=\omega t_{0}+\theta+w\left(\frac{d_{i}}{c}+n_{i}\right), i=1,2, \cdots, M .
$$

where τ_{i} is the TOA measurement from the i ith anchor node，t_{0} is the unknown trans－
mission time at the anchor nodes，d_{i} is the distance between the source node and the mission time at the anchor nodes，d_{i} is the distance between the source node and the i th anchor node，and n_{i} is the measurement noise．
The time measurements are converted to range measurements as

$$
r_{i}=\omega z+\omega\left(d_{i}+e_{i}\right), i=1,2, \cdots, M .
$$

$$
\begin{aligned}
& \text { where } r_{i}=\tau_{i}, c_{i} z=\left(t_{0}+\frac{\theta}{\omega}\right) c \text {, and } e_{i}=n_{i} c . \\
& \text { The MLE problem: } \\
& \left.\qquad \min _{\mathrm{u}, \omega, z} \sum_{i=1}^{M} \frac{\left(r_{i}\right.}{\omega}-\left\|\mathbf{u}-s_{i}\right\|-z\right)^{2} \\
& \sigma_{i}^{2}
\end{aligned}
$$

2 Localization Algorithm

$$
\begin{aligned}
& \text { Next, an SDP based } \\
& \text { of the source node }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ased method is } \\
& \text { de. } \\
& \text { expressed }
\end{aligned}
$$

$$
\min _{\mathrm{u}, a, z, \mathrm{~d}}\left(a \mathrm{r}-\mathrm{d}-z 1_{M}\right)^{T} \mathrm{Q}^{-1}\left(a \mathrm{r}-\mathrm{d}-z 1_{M}\right)
$$

s．t．$d_{i}=\left\|\mathbf{u}-\mathbf{s}_{i}\right\|, i=1,2, \cdots, M$ ． where $a=\frac{1}{1}, \mathbf{r}=\left[r_{1}, r_{2}, \cdots, r_{M}\right]^{T}, \mathbf{d}=\left[d_{1}, d_{2}, \cdots, d_{M}\right]^{T}$ ．Let $\mathbf{A}=\left[\mathbf{r},-\mathbf{1}_{M}\right]$ ，and
$\mathbf{y}=[a, 7]^{T}$ ．Then（5）can be recast as $\min _{\mathrm{a}, \mathrm{y}, \mathrm{d}}(\mathbf{A y}-\mathbf{d})^{T} \mathbf{Q}^{-1}(\mathbf{A y}-\mathrm{d})$ s．t．$d_{i}=\left\|\mathbf{u}-\mathrm{s}_{i}\right\|$

TOA SOURCE NODE SELF－POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS

Contributions

－Asynchronous TOA localization［3］is extended to a more practical case：the clock skew of source node is unknown．
－An SDP based algorithm is developed to solve this problem，which has better performance than the IDOA scheme describ（5a）

Let the gradient of the objective function in（6）with respect to y equal zero：

$2 \mathbf{A}^{T} \mathbf{Q}^{-1}(\mathbf{A} \boldsymbol{y}-\mathrm{d})=0$,

which results in
Substituting（8）into（6）yields

$\min (\mathbf{H d})^{T} \mathbf{Q}^{-1}(\mathbf{H d})$

s．t．$d_{i}=\left\|\mathrm{u}-\mathrm{s}_{i}\right\|$
where $\mathbf{H}=\mathbf{A}\left(\mathbf{A}^{T} \mathbf{Q}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{Q}^{-1}-\mathbf{I}_{M}$.
By letting $\mathbf{D}=\mathbf{d d}^{T}$ ，（9a）can be rewritten
$(\mathbf{H d})^{T} \mathbf{Q}^{-1}(\mathbf{H d})=\operatorname{tr}\left(\mathrm{dd}^{T} \mathbf{H}^{T} \mathbf{Q}^{-1} \mathbf{H}\right)=\operatorname{tr}\left(\mathbf{D H}^{T} \mathbf{Q}^{-1} \mathbf{H}\right)$.
Further，by letting $y_{s}=\mathbf{u}^{T} \mathbf{u}$ ，from（9b），we have

$$
\mathbf{D}_{i, i}=d_{i}^{2}=\left\|\mathbf{u}-\mathbf{s}_{i}\right\|^{2}=\mathbf{y}_{s}-2 \mathbf{u}^{T} \mathbf{s}_{i}+\mathbf{s}_{i}^{T} \mathbf{s}_{i}, i=1,2, \ldots, M
$$

and
（4）
An SDP－based localit $=\left|\mathbf{y}_{s}-\mathbf{u}^{T}\left(\mathbf{s}_{i}+\mathbf{s}_{j}\right)+\mathbf{s}_{i}^{T} \mathbf{s}_{j}\right|, 1 \leq i<j \leq M$.
ion algorithm is finally expressed
$\min _{\mathbf{u}, y_{s}, \mathbf{d}, \mathbf{D}} \operatorname{tr}\left(\mathbf{D H}^{T} \mathbf{Q}^{-1} \mathbf{H}\right)+\eta \operatorname{tr}(\mathbf{D})$
s．t． $\mathbf{D}_{i, i}=\mathrm{y}_{s}-2 \mathrm{u}$
$\left\|\mathbf{u}-\mathrm{s}_{i}\right\| \leq d_{i}$,
$\|$
$\mathbf{D}_{i, j} \geq\left|\mathbf{y}_{s}-\mathbf{u}^{T}\left(\mathbf{s}_{i}+\mathbf{s}_{j}\right)+\mathbf{s}_{i}^{T} \mathbf{s}_{j}\right|$,
$\left[\begin{array}{cc}1 & d^{T} \\ d & D\end{array}\right] \succeq 0$
$\left[\begin{array}{ll}\mathbf{I}_{m} & \mathbf{u} \\ \mathbf{u}^{T} & \mathrm{y}_{\mathrm{s}}\end{array}\right] \succeq 0$
The next step would be to calculate \mathbf{y} ，i．e．，（8）using the value of \hat{u} obtained．The clock
skew is estimated from y as
（8）
（13b）
（13c）
（13d）
（13e）
（13f）
clock
（14）

3 Localization Algorithm With Position Uncertainties
When the locations of the anchor nodes are not precise，which is mostly the case in practice，the sensor positions with errors can be expressed as $[3]$
where s_{i}^{0} is the actual but unknown sensor position and β_{i} represents the position er－
${ }^{\text {ror }}$ ，which is assumed to be a zero－mean Gaussian vector with a known covariance $\delta^{2} 2$ 2．The MLE problem is expressed as

$$
\min _{\mathbf{u}, \omega, i, s, s_{i}} \sum_{i=1}^{M} \frac{\left(\frac{r_{1}}{w}-\left\|\mathbf{u}-\mathbf{s}_{i}^{0}\right\|-z\right)^{2}}{\sigma_{i}^{2}}+\sum_{i=1}^{M} \frac{\left\|\mathbf{s}_{i}-s_{i}^{0}\right\|^{2}}{\delta_{i}^{2}}
$$

where z and s_{i}^{0} are the nuisance parameters．
Eq．（16）can be expressed as
Eq．（16）can be expressed as

$$
\min _{\mathbf{X}, \mathbf{y}, \mathbf{d}}(\mathbf{A y}-\mathbf{d})^{T} \mathbf{Q}^{-1}(\mathbf{A y}-\mathbf{d})+\left\|(\mathbf{B}-\mathbf{X}(:, 2: M+1)) \mathbf{W}^{\frac{1}{2}}\right\|_{F}^{2}
$$

$$
\text { s.t. } d_{i}=\|\mathbf{X}(:, 1)-\mathbf{X}(:, i+1)\|
$$

where $\mathbf{X}=\left[\mathbf{u}, \mathbf{s}_{1}^{0}, \mathbf{s}_{0}^{0}, \ldots, \mathbf{s}_{M}^{0}\right], \mathbf{B}=\left[\mathbf{s}_{1}, \mathbf{s}_{2}, \cdots, \mathbf{s}_{M}\right], \mathbf{W}=\operatorname{diag}\left(\left[\delta_{1}^{-2}, \delta_{2}^{-2}, \cdots, \delta_{M}^{-2}\right]\right)$ ．
The SDP－based localization algorithm with anchor node position erors are expressed

SIMULATIONS
There are six anchor nodes，and their true positions are $[0,0]^{T} m,[400,0]^{T} m,[800,0]^{T} m$,
$[800,800]^{T} m,[400,800]^{T} m,[0,800]^{T} m \cdot t_{0}, \omega$, and θ are uniformly distributed within $[10,40] n s$, ，$[0.995,1.005]$ ，and $[1,10] n s$, respectively．Both TOA measurement errors and anchor node position errors are assumed to be independent and identicaly
tributed，i．e．，$\sigma_{i}^{2}=\sigma^{2}, \delta_{2}^{2}=\delta^{2}$, and η is set to $10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$ for the proposed algorithms and the algorithms in［3］．

Figure 1：No sensor position errors，RMSE of position vs．$\sigma, \mathrm{u}=[200,100]^{T}$,

Figure 2：Exist sensor position errors，RMSE of position vs．$\delta, \mathbf{u}=[200,100]^{T} m, \sigma=0.1 \mathrm{~m}$ ．

References

1］M．R．Gholami，S．Gezici，and E．G．Strom，＂TDOA based positioning in the presence of un－
2013. 2］ $\mathrm{Y}, \mathrm{Zou} H,$, Liu and Q ．Wan，＂Joint synchronization and localization in wireless sensor net－
works using semidefinite programming，＂IEEE Internet of Things Journal，vol．5，no．1，pp． 99－205，Feb． 2018.
3］Y．Zou，and Q．Wan，＂Asynchronous Time－of－Arrival－Based Source Localization with Sensor
Position Uncertainties，＂IEEE Communications Letters，vol．20，no．9，pp．1860－183，Sep．2016．

CONTACT INFORMATION

Yanbin Zou Email：201311020327＠std．uestc．edu．cn

