Problem Formulation

Subspace clustering plays a very important role in clustering problem. At present, graph based methods have a good
development in solving the problem of subspace clustering. The low-rank representation based method (LRR) proposed
by Liu et al. [2] is one of the classical method, which can be described as

O
mZinHZH*, st. X = XZ. (1)
Problem (1) presents the low-rank representation based model. In general, after obtaining the optimal solution Z, the
graph is ddnstructed by (|Z7| + |Z|)/2 and spectral clustering is utilized as postprocessing on this graph. In this paper,
\we want to learn an optimal structured graph to avoid this postprocessing.

Contributions

We proposed a novel low-rank representation based
method LOSBG via the optimal bipartite graph, and main
contributions of this paper are summarized as follows.

Optimization

For the objective function (2), there are four variables
needed to be updated. Whenfixing the variables S and F,
problem (2) can be further transformed into the following

problemt
e Different with classical subspace clustering method-

s which need spectral clustering as postprocessing
on the constructed graph to get the final result, our
method can directly learn a structural graph with &
connected components so that different clusters can
be obtained easily.

. 2
in, [+ A By, + A2 1S = Z %

st. X=XZ+E,Z=J.

Hence, we can utilize the Augmented Lagrange Multiplier
problem of problem (4) to update the variables Z, E, J.

e We introduce a regularization term of error matrix Updating the mBtrix J , problem (4) becomes
to our model which makes the proposed algorithm o
more effective to learn an optimal graph under the

circumstances of various noise.

1 1 1
argmin — ||J||, + = ||J — (Z + =Y- 2. 5
g u” e+ 5017 = . 2) |7 (5)

e An efficient algorithm is designed to achieve the sub-
space clustering method, and extensive experiments
are conducted to verify the effectiveness and superi-

\ ority of our model.

The reference [1] has proved that problenh (5) has an ana-
lytical solution.
Updating the matrix Z, we can get the closed form

Z =[(1- &)I + XTX)XTX ~ g xTp

H H
LOSES +J+ %(XTYl —Ya)].

In this work, based on the idea of co—clusteringl:{iﬂ, we
want to learn an optimal bipartite graph with & connected
components which can avoid the postprocessing. Combin-
ing Theorem  with theoretical derivation, the final opti-
mization problem can be described as

(6)

Updating the error matrix E, we have
A 1 1
argmlnflHEH21+*HE—(X—XZ+7Y'1)||%—‘. (7)
E M T2 %
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Jmin 121+ Bl + 22 1S = 213+ datr(F L F)

s.t.

Lin et al.5[2] have given the closed-form solution for this
problem in Lemma 3.2.

When fixing the variables Z and E, probleny (2) is e-
quivalent to the following problem

X=XZ+E,S>051=1F'F=1IFecRN**
(2)

Here, 1 = (1,1,...,1)7, L¢ is the normalized Laplacian
matrix of graph G. For problem (R), we introduce a reg-
ularization term of error matrix, which makes our model
robust to noise. Combining with the idea of co-clustering,
the bipartite graph G is constructed by the learned matrix

S as follows:
0o S
-8 9]

min||S — Z||3 + Mr(FT Lo F)
S,F (8)
st. $>0,81=1FT"F=1F¢e RV

here, A = A3/A\2. Nie et al.0[3] present an iterative algo-
rithm which can solve the problenn(8) effectively. Due to
the limitation of space, we omit this optimization process
which can be seen in our paper.

(3)
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Theoretical Support

Theorem 1 ([3]). The multiplicity k of the eigenvalue 0 of the normalized Laplacian matriz Lg is equal to the number
of connectedicomponents in the graph associated with G.

In reference [1], it has proved that the following problem has an closed form solution.(Here, USVT is the SVD of W.)

(]
1 r—e¢, ifx>e,
US[S|VT = argmine|| X ||, + §HX — W%, where S.x]=1{ z+e, ifz<—¢, (9)
X 0, otherwise.

Lemma 1 (the Lemma 3.2 in reference [2]). Let Q = [q1,42, .-, Gi, --.] be a given matriz and ||.|r be the Frobenius
norm. The following problem has an optintdl solution W*.(Here, W*(:,4) represents the i-th column of W*.)
ill2—A .
lada=2g,, i A < llgill2,
0, otherwise.

(10)

1
W* = argmin A||W |21 + §||W — Q||%, where W*(:,i) = {
w
-

Visualization Experiment Results

noise=0.8 noise=0.9

noise=0.6 noise=0.7 v
We apply LOSBG to a high-dimensional synthetic dataset as a sanity check, which contains five 50-dimensional subspaces.
In order to verify the robustness of LOSBG, we add Gaussian noise to this dataset and set the proportion of noise to be
r =0.6,0.7,0.8,0.9 respectively. The above figures show the learned structured graph S by LOSBG under different levels

\of noise. The clustering accuracies are 100%, 100%, 100% and 79.80% respectively from left to right.

Algorithm Description

[1] Zhouchen Lin, Minming Chen, and Yi Ma. The aug-
mented lagrange multiplier method for exact recovery
of corrupted low-rank matrices. arXiv preprint arX-
w:1009.5055, 2010.

Input: data matrix X, the cluster number k.
Initialize: Randomly initialize the matrix .S to
satisfy the constraint condition in probleg (2).
while not converge do
1. Fix others, update J by solving probl
2. Fix others, update Z by formulpa (6).
3. Fix others, update E by solving problem (7),
4. Fix others, update S and F', the matrices S
and F' can by obtained effectively by optimize
the problep (8) with an iterative algorithm 3]
proposed by Nie et al. [3].
| 5. Update multipliers Y7, Y5 and parameter pu.
Output: the learned bipartite graph G and the
cluster label.
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