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Problem Formulation

.

Subspace clustering plays a very important role in clustering problem. At present, graph based methods have a good
development in solving the problem of subspace clustering. The low-rank representation based method (LRR) proposed
by Liu et al. [2] is one of the classical method, which can be described as

min
Z

∥Z∥∗, s.t. X = XZ. (1)

Problem (1) presents the low-rank representation based model. In general, after obtaining the optimal solution Z, the
graph is constructed by (|ZT | + |Z|)/2 and spectral clustering is utilized as postprocessing on this graph. In this paper,
we want to learn an optimal structured graph to avoid this postprocessing.
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Contributions

.

We proposed a novel low-rank representation based
method LOSBG via the optimal bipartite graph, and main
contributions of this paper are summarized as follows.

• Different with classical subspace clustering method-
s which need spectral clustering as postprocessing
on the constructed graph to get the final result, our
method can directly learn a structural graph with k
connected components so that different clusters can
be obtained easily.

• We introduce a regularization term of error matrix
to our model which makes the proposed algorithm
more effective to learn an optimal graph under the
circumstances of various noise.

• An efficient algorithm is designed to achieve the sub-
space clustering method, and extensive experiments
are conducted to verify the effectiveness and superi-
ority of our model.
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LOSBG

.

In this work, based on the idea of co-clustering [3], we
want to learn an optimal bipartite graph with k connected
components which can avoid the postprocessing. Combin-
ing Theorem 1 with theoretical derivation, the final opti-
mization problem can be described as

min
Z,E,S,F

∥Z∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F + λ3tr(F
T L̃GF )

s.t. X = XZ + E,S ≥ 0, S′111 = 111, FTF = I, F ∈ RN×k.

(2)

Here, 111 = (1, 1, ..., 1)T , L̃G is the normalized Laplacian
matrix of graph G. For problem (2), we introduce a reg-
ularization term of error matrix, which makes our model
robust to noise. Combining with the idea of co-clustering,
the bipartite graph G is constructed by the learned matrix
S as follows:

G =

[
0 S
ST 0

]
. (3)
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Optimization

.

For the objective function (2), there are four variables
needed to be updated. When fixing the variables S and F ,
problem (2) can be further transformed into the following
problem

min
Z,E,J

∥J∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F

s.t. X = XZ + E,Z = J.
(4)

Hence, we can utilize the Augmented Lagrange Multiplier
problem of problem (4) to update the variables Z,E, J .

Updating the matrix J , problem (4) becomes

argmin
J

1

µ
∥J∥∗ +

1

2
∥J − (Z +

1

µ
Y2)∥2F . (5)

The reference [1] has proved that problem (5) has an ana-
lytical solution.

Updating the matrix Z, we can get the closed form

Z =[(1− 2λ2

µ
)I +XTX]−1[XTX − 2λ2

µ
S −XTE

+ J +
1

µ
(XTY1 − Y2)].

(6)

Updating the error matrix E, we have

argmin
E

λ1

µ
∥E∥2,1 +

1

2
∥E − (X −XZ +

1

µ
Y1)∥2F . (7)

Lin et al. [2] have given the closed-form solution for this
problem in Lemma 3.2.

When fixing the variables Z and E, problem (2) is e-
quivalent to the following problem

min
S,F

∥S − Z∥2F + λtr(FT L̃GF )

s.t. S ≥ 0, S′111 = 111, FTF = I, F ∈ RN×k,
(8)

here, λ = λ3/λ2. Nie et al. [3] present an iterative algo-
rithm which can solve the problem (8) effectively. Due to
the limitation of space, we omit this optimization process
which can be seen in our paper.
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Theoretical Support

.

Theorem 1 ([3]). The multiplicity k of the eigenvalue 0 of the normalized Laplacian matrix L̃G is equal to the number
of connected components in the graph associated with G.

In reference [1], it has proved that the following problem has an closed form solution.(Here, USV T is the SVD of W .)

USϵ[S]V
T = argmin

X
ϵ∥X∥∗ +

1

2
∥X −W∥2F , where Sε[x] =

 x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise.

(9)

Lemma 1 (the Lemma 3.2 in reference [2]). Let Q = [q1, q2, ..., qi, ...] be a given matrix and ∥.∥F be the Frobenius
norm. The following problem has an optimal solution W ∗.(Here, W ∗(:, i) represents the i-th column of W ∗.)

W ∗ = argmin
W

λ∥W∥2,1 +
1

2
∥W −Q∥2F , where W ∗(:, i) =

{
∥qi∥2−λ
∥qi∥2

qi, if λ < ∥qi∥2,
0, otherwise.

(10).
.

Visualization Experiment Results

.
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We apply LOSBG to a high-dimensional synthetic dataset as a sanity check, which contains five 50-dimensional subspaces.
In order to verify the robustness of LOSBG, we add Gaussian noise to this dataset and set the proportion of noise to be
r = 0.6, 0.7, 0.8, 0.9 respectively. The above figures show the learned structured graph S by LOSBG under different levels
of noise. The clustering accuracies are 100%, 100%, 100% and 79.80% respectively from left to right.
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Algorithm Description

.

Input: data matrix X, the cluster number k.
Initialize: Randomly initialize the matrix S to
satisfy the constraint condition in problem (2).
while not converge do

1. Fix others, update J by solving problem (5).
2. Fix others, update Z by formula (6).
3. Fix others, update E by solving problem (7),
4. Fix others, update S and F , the matrices S
and F can by obtained effectively by optimize
the problem (8) with an iterative algorithm
proposed by Nie et al. [3].
5. Update multipliers Y1, Y2 and parameter µ.

Output: the learned bipartite graph G and the
cluster label.
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