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Background

 Physical-layer (PHY)  security and multicasting

 PHY security can overcome the inherent 
difficulties of cryptographic methods.
 PHY-multicasting transmits common messages in 
a way that all receivers can decode them.

 Traditionally they are independently investigated.

 PHY service integration

 merging multiple services into one integral service 
for one-time transmission.
 enable coexisting services to share the same 
resources, thereby significantly increasing the 
spectral efficiency.

 Motivation

 Many works focused on PHY service integration 
only from the viewpoint of information theory.
 DMBC (Csiszar et al. ’78)
 MIMO (Ly et al. ’10)
 Bidirectional relay (Wyrembelski et al. ’12)
 Compound BC with uncertainties (Wyrembelski 
et al. ’12)

 How to derive certain transmit design to achieve
the boundary points of the secrecy rate region?

System Model

 A multi-antenna transmitter serves K receivers, and 
each receiver has a single antenna.

 All receivers have ordered the multicast service and 
receiver 1 further ordered the confidential service.

 The received signal at receiver k
yk = hkx + zk

hk-kth receiver's channel response  zk-AWGN
Transmitted components

x = x0 + xc + xa
x0-multicast message, x0~CN(0,Q0)
xc-confidential message, xc~CN(0,Qc)
xa-artificial noise, xa~CN(0,Qa)
 Deterministically bounded CSI error model

Robust Scheme

Worst-case secrecy rate region
Under the above described deterministically bounded 
CSI error model, an achievable worst-case secrecy 
rate region is determined by [Ly et al. ’10]

where

Problem Formulation

This optimization problem also provides us a way to 
determine the boundary points of the secrecy rate 
region, by traversing all possible τ's.

Further simplify (1) by introducing a slack variable β

Since this problem is non-convex and challenging to 
solve directly. To deal with it, we recast it into a two-
stage optimization problem. 

Problem Re-Formulation
The outer-stage part is with regard to (w.r.t.) β

where log γ*(τ')=g*(τ'). The inner-stage part calculates 
η(τ',β) for a fixed β
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 The inner-stage optimization

 By resorting to the S-procedure [1], we can 
recast the above optimization as follows

where

 S-procedure
Let                                         , where  

,          . The implication 
holds if and only if there exists a           such that 

The remaining difficulty in solving (4) lies in its 
objective function, especially the uncertainty 
therein.

[1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university 
press, 2009..

Numerical Results

Nt=2, K=5

Channel responses

P=20dB

εk=0.2 for all k

 Worst-case secrecy rate regions

 The existence of channel uncertainty dramatically 
diminishes the achievable secrecy rate region

 AN indeed enhances the security performance 
without compromising the QoMS.

 The gap tends to be reduced, which implies that AN 
is prohibitive at high QoMS region.

 Secrecy rate versus #unauthorized receivers

 The worst secrecy rates drops with the number of 
unauthorized receivers.

 Incorporating service integration restrains the 
maximum worst-case secrecy rates

Concluding Remarks

 Considered the optimal robust AN-aided transmit 
design for multiuser MISO broadcast channel with 
confidential service and multicast service .

By resorting to a two-stage reformulation, the 
problem can be handled by solving a sequence of 
fractional SDPs.

AN can effectively fortify the transmission security, 
but high demand for QoMS will confine its use in turn.

 Identification of the quasi-concavity of (4)
Property 1: Let us define

Then f(Qc,Qa) is a quasi-concave function on the 
problem domain of (4), and hence the 
maximization problem (4) is a quasi-concave 
problem.
Proof: We just need to verify the convexity of the 
α-superlevel set of f(Qc,Qa).

By using the S-procedure again, one can easily 
obtain

where

The proof is completed .                                  █

Consequently, the optimization problem (4) can be 
efficiently solved by combining a bisection search [1] 
with a convex optimization solver, e.g., CVX.
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