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Background

1 Physical-layer (PHY) security and multicasting

» PHY security can overcome the inherent
difficulties of cryptographic methods.

» PHY-multicasting transmits common messages in
a way that all receivers can decode them.

» Traditionally they are independently investigated.

d PHY service integration

» merging multiple services into one integral service
for one-time transmission.

» enable coexisting services to share the same
resources, thereby significantly increasing the
spectral efficiency.

J Motivation

» Many works focused on PHY service integration
only from the viewpoint of information theory.
v' DMBC (Csiszar et al. '78)
v MIMO (Ly et al. '10)
v' Bidirectional relay (Wyrembelski et al. '12)
v' Compound BC with uncertainties (Wyrembelski
et al. '12)
» How to derive certain transmit design to achieve
the boundary points of the secrecy rate region?

System Model

d A multi-antenna transmitter serves K receivers, and
each receiver has a single antenna.

1 All receivers have ordered the multicast service and
receiver 1 further ordered the confidential service.

Receiver K

1 The received signal at receiver k
Vi=hX+z
h,-kth receiver's channel response z,-AWGN

dTransmitted components

X=X,+X.+X_
X,-multicast message, x,~CN(0,Q,)
X _-confidential message, x ~CN(0,Q,.)
x_-artificial noise, x ~CN(0,Q )
1 Deterministically bounded CSI error model

h,=h, +e, e, <&

Robust Scheme

JWorst-case secrecy rate region

Under the above described deterministically bounded
CSI error model, an achievable worst-case secrecy
rate region is determined by [Ly et al. "10]
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OProblem Formulation
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This optimization problem also provides us a way to
determine the boundary points of the secrecy rate
region, by traversing all possible 7's.

Further simplify (1) by introducing a slack variable £
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Q,>=0,Q,>=0,Q, >0,
Since this problem is non-convex and challenging to
solve directly. To deal with it, we recast it into a two-
stage optimization problem.
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AProblem Re-Formulation
The outer-stage part is with regard to (w.r.t.) 5
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where log y*(t')=g*(t"). The inner-stage part calculates
n(t',B) for a fixed £
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d The inner-stage optimization

» By resorting to the S-procedure [1], we can
recast the above optimization as follows
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— S-proceadure
Let @, (X)=x"AX+2R{b,X}+¢, , where A, eH"
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The remaining difficulty in solving (4) lies in its
objective function, especially the uncertainty
therein.

[1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 20009..

» Identification of the quasi-concavity of (4)
Property 1: Let us define

~ . 1+h(Q, +Q)h/
/(Q..Q,)=min pA+hQ,h")

Then fQ_.Q, ) is a quasi-concave function on the
problem domain of (4), and hence the
maximization problem (4) is a quasi-concave
problem.

Proof: We just need to verify the convexity of the
a-superlevel set of [Q_,Q.).

S, =1/(Q..Q,)Q,=0,Q, >0, /(Q..Q,) =}

By using the S-procedure again, one can easily
obtain
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The proof is completed . |

Consequently, the optimization problem (4) can be

efficiently solved by combining a bisection search [1]
with a convex optimization solver, e.qg., CVX.

Numerical Results

»N =2, K=5
»Channel responses
h,=[2,0.4],h, =[0.9-0.1k,0.5+0.1k |,k € A,
> P=20dB
»e,=0.2 for all &

J Worst-case secrecy rate regions
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» The existence of channel uncertainty dramatically
diminishes the achievable secrecy rate region

» AN indeed enhances the security performance
without compromising the QoMS.

» The gap tends to be reduced, which implies that AN
is prohibitive at high QoMS region.

1 Secrecy rate versus #unauthorized receivers
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» The worst secrecy rates drops with the number of
unauthorized receivers.

» Incorporating service integration restrains the
maximum worst-case secrecy rates

Concluding Remarks

1 Considered the optimal robust AN-aided transmit
design for multiuser MISO broadcast channel with
confidential service and multicast service .

By resorting to a two-stage reformulation, the
problem can be handled by solving a sequence of
fractional SDPs.

AN can effectively fortify the transmission security,
but high demand for QoMS will confine its use in turn.




