

ABSTRACT

We propose speaker characterization using time delay neural networks and long short-term memory neural networks (TDNN-LSTM) speaker embedding. Three types of front-end feature extraction are investigated to find good features for speaker embedding. Three kinds of data augmentation are used to increase the amount and diversity of the training data. Experimental results were evaluated with the proposed methods on the SRE 2016 and SRE 2018.

We propose a speaker-embedding model called Lvectors based on TDNN and LSTM. The motivation of using both TDNN and LSTM in L-vectors is to better capture the temporal information in speech than using TDNN alone as in X-vectors. We investigate three types of front-end feature extraction to analyze speech from different signal aspects. Three kinds of data augmentation are used to increase the amount and diversity of the available training data.

corpora	type	# utts	# spks	
Mixer6	miorophono	3,423	547	
VoxCeleb	microphone	1,245,525	7,245	
Mixer6		8,809	591	
Switchboard	telephone	28,181	2,594	
NIST-SRE		50,850	4,236	
Fisher		23,392	12,399	

We modify the original TDNN-based x-vector by replacing two TDNN layers with an LSTM layer, we refer to this representation as **TDNN-LSTM (L**vector).

SPEAKER CHARACTERIZATION USING TONN-LSTM BASED SPEAKER EMBEDDING Chia-Ping Chen¹, Su-Yu Zhang¹, Chih-Ting Yeh¹, Jia-Ching Wang², Tenghui Wang², Chien-Lin Huang³ ¹National Sun Yat-sen University, Kaohsiung | ²National Central University, Taoyuan }, Taiwan

INTRODUCTION

DATASET

A. Training data

The proposed systems are trained on Switchboard, NIST-SRE, Fisher, Mixer 6 and VoxCeleb datasets.

 Table 1. Training data

B. Data augmentation

- 1. Babble, noise, and music
- 2. Room impulse responses
- 3. Speed perturbation

SYSTEM ARCHITECTURE

A. Feature extraction

• Feature extraction:

- 1. Mel-frequency cepstral coefficients (MFCCs)
- 2. Linear mel-filterbank energies with pitch (FBP)
- 3. Perceptual linear predictive (PLP)

Voice activity detection: remove silence or low signal-to-noise ratio frames in the audio samples.

B. Model architecture

C. Classifier and score fusion •Classifier:

•Score fusion:

Figure 2. The step-by-step process of the proposed speaker embedding methods.

³PAII Inc, Palo Alto CA, USA

Figure 1. The network architecture of TDNN for X-vectors and TDNN-LSTM for L-vectors.

1. Out-of-domain PLDA (English)

2. In-domain adapted PLDA : SRE unlabeled data (Arabic)

1. BOSARIS toolkit: fusion weight and bias are learned by SRE 2018 development data. **2.** Average: simple average of the output scores of 12 systems.

EXPERIMENTS AND RESULTS

Toolkit: Kaldi and NIST SRE toolkit

A. NIST SRE 2018 Results

Development set results of single systems

		L-vector TDNN5			X-vector TDNN6			
		EER%	min_DCF	act_DCF	EER%	min_DCF	act_DCF	
MFCC	CMN2	6.91	0.441	0.446	7.58	0.434	0.453	
	VAST	3.70	0.416	0.490	5.35	0.333	0.519	
	Pooled			0.468			0.486	
PLP	CMN2	6.98	0.424	0.435	7.31	0.430	0.437	
	VAST	3.70	0.267	0.407	7.41	0.412	0.481	
	Pooled			0.421			0.459	
FBP	CMN2	6.77	0.412	0.429	7.06	0.402	0.409	
	VAST	3.70	0.296	0.370	7.41	0.379	0.416	
	Pooled			0.400			0.412	

Table 2. EER and DCF results of the SRE 2018 development set.

Evaluation set results of score fusion

IN2	6.15	0.392	0 202
		01002	0.333
ST	16.03	0.668	1.004
oled			0.699
ST	11.93	0.489	0.608
bled			0.501
	oled ST oled	oled ST 11.93 oled	Image: second

B. NIST SRE 2016 Results

	L-vector TDNN5		L-vector TDNN6		X-vector TDNN6		X-vector TDNN7	
	EER%	min_DCF	EER%	min_DCF	EER%	min_DCF	EER%	min_DCF
MFCC	7.03	0.519	7.93	0.519	7.46	0.537	7.71	0.541
PLP	7.42	0.532	8.19	0.532	7.45	0.544	8.13	0.534
FBP	6.99	0.520	7.95	0.511	7.14	0.519	7.65	0.505

Table 4. EER and DCF results of the SRE 2016 evaluation set.

- evaluation set.

Table 3. EER and DCF results of the SRE 2018 evaluation set

Average of all systems: Achieve an EER of 5.56% and a minimum DCF of **0.423** in NIST SRE 2016

CONCLUSION

FBP shows the best performance among 3 features.

L-vector with FBP features is the best single system in SRE 2018 development set.

Average fusion of 12 systems achieve better DCF than single system in NIST SRE 2016 evaluation set.