

A CASCADE OF CNN AND LSTM NETWORK WITH 3D ANCHORS FOR MITOTIC CELL DETECTIONIN4DMICROSCOPICIMAGE

Titinunt Kitrungrotsakul^{1,5}, Yutaro Iwamoto¹, Xian-Hua Han², Satoko Takemoto³,

Hideo Yokota³, Sari Ipponjima⁴, Tomomi Nemoto⁴, Wei Xiong⁵, Yen-Wei Chen^{1,*}

¹ Ritsumeikan University, Shiga, Japan

² Faculty of Science, Yamaguchi University, Japan

³ Center for Advanced Photonics, RIKEN, Japan

⁴*Research Institute for Electronic Science, Hokkaido University, Japan*

⁵ Institute for Infocomm Research, A*Star, Singapore

BACKGROUND & CONTRIBUTATION

Background & Problems

- •Mitotic can be used to understand cell behaviors, analyze diseases, and in many biomedical applications.
- •Detection methods are done on 2D image and problem occur on those methods
- The mitosis event not occur only on x-y plane

METHODOLOGY

Two Main Parts of Our Network

2.5D Method for Feature Extraction

- Each slice (s) generated feature map (f_s) .
- Considering the temporal information by using bidirectional CLSTM.
- Mitotic cell may move from outside of the capture screen

Contribution

- Propose 3D anchors for 4D mitotic detection
 - Reduce false negative results
- Able to detect oriented mitotic cells
- Combine CLSTM to include temporal information
 - significantly reduce false positive results

Proposed Deep Network Architecture (CasDetNet_LSTM_3D Anchor)

3D Anchors for Mitotic Cell Prediction

- Merging spatial information from nearby slices (f_{s-1}, f_s, f_{s+1})
- Generate prediction result by using 3D anchors for slice (s)

POST PROCESSING

- Refine our network results
- Remove erroneously identified
- Adding missing mitotic cells
- Using both spatial and temporal •information

$$\begin{split} \delta^{t+k}_{s+j,i} &= \begin{cases} 1, & \text{if } C^{t+k}_{s+j,i} \ge 0.5 \\ 0, & \text{else} \end{cases} \\ W^{t+k}_{s+j,i} &= 1 - \frac{\sqrt{j^2 + k^2}}{\sqrt{N^2 + T^2}} \\ \hat{C}^{t+k}_{s+j,i} &= \frac{\sum_{j=-N}^{N} \sum_{k=-T}^{T} W^{t+k}_{s+j,i} \delta^{t+k}_{s+j,i}}{\sum_{j=-N}^{N} \sum_{k=-T}^{T} W^{t+k}_{s+j,i}} \end{split}$$

DATASET

Dataset information

- From TC-IAIPA-IA2017
- 16 set of 4D data
- 80 temporal frames
- Size: 480x480x37

Data augmentation

- 1-3 mitotic cell(s)
- Rotated 15°
- Scale 0.8~1.2

RESULT

Table 1. Quantitative comparison of our proposed methods
 and conventional methods for 2D image slices.

Method	Precision	Recall	F1 Score
2D Faster R-CNN [14]	0.0870	0.9310	0.509
3D Faster R-CNN	0.0592	0.4143	0.2367
SSD [15]	0.0411	0.7221	0.3816
HCNN [9]	0.7003	0.6910	0.6957
TS-BLSTM [10]	0.7883	0.7751	0.7817
2.5D Faster R-CNN [11]	0.3591	0.7532	0.5562
CasDetNet_CNN [11]	0.7228	0.70358	0.7132
CasDetNet_LSTM	0.8195	0.7974	0.8085
CasDetNet_LSTM_3DAnchor	0.8356	0.8442	0.8399

Table 2. Detection results on 4D images to observe the orientation robustness.

Data		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Sugano[16]	TP	1	1	2	3	2	1	0	1	2	2	1	1	0	2	2	2
	FN	0	0	0	0	1	0	1	0	0	0	1	2	1	0	0	(
	FP	0	3	0	0	0	0	0	0	0	9	0	0	0	1	17	(
Faster RCNN[14]	TP	1	1	2	3	3	1	1	1	2	2	2	3	0	2	2	1
	FN	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	(
	FP	8	5	9	12	16	4	4	7	8	7	6	9	8	4	15	1
CasDetNet_LSTM	TP	1	1	2	3	1	1	1	1	1	2	1	1	0	2	2	1
	FN	0	0	0	0	2	0	0	0	1	0	1	2	1	0	0	
	FP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CasDetNet_LSTM_3DAnchor	TP	1	1	2	3	1	1	1	1	2	2	2	3	1	2	2	
	FN	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	
	FP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ground truth		1	1	2	3	3	1	1	1	2	2	2	3	1	2	2	

s+1

- We proposed a 2.5D cascaded CNN and LSTM network with 3D anchors for mitotic cell detection in 4D microscopic images. - Our experimental results show that the proposed method can perform better than the state-of-the-art methods such as Faster RCNN, Single Shot Multi-Box Detector (SSD), Hierarchical Convolution Neural Network (HCNN), Two-Stream Bidirectional Long Short-Term Memory (TS-BLSTM), and the winner of the TC-IAIP AIA2017 contest