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INTRODUCTION
• Objective:
Improve the state-of-the-art LSTMRecurrent Neu-
ral Networks (RNNLMs) in ASR

• Standard LSTM RNNLMs:
1) The same form of activation functions for all
nodes in each cell
2) Deterministic weight parameter estimates

• Limitations:
1) Need flexibly optimized activation functions for
memory gating given different datasets
2) Prone to over-fitting and poor generalization on
limited training data

• Proposed GP-LSTM RNNLMs:
1) Adopt Gaussian process (GP) to model the un-
certainty of acitvation functions
2) Automatically learn the optimal forms of gates
for all hidden nodes in each LSTM cell
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GP-LSTM CELL
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GAUSSIAN PROCESS ACTIVATION FUNCTION
• Standard gate: At the d-th node, any gate can be expressed as gd (z) = φ(θd • z), given a fixed
activation function φ(·) and the d-th node’s weight vector θd.

• Proposed gate: Gaussian process activation function (GPact) at the d-th node is defined as

gd (z) =
∫ K∑
k=1

λkdφk (θd • z) p(θd|W) dθd, (1)

where {λkd}Kk=1 are the coefficients for a linear combination of K basis activation functions {φk(·)}Kk=1
and p(θd|W) is the posterior given the observed word sequence W =< w1,w2, ...,wT >.

• Variational Inference (VI): In Bayesian inference p(θd|W) is intractable, thus it is common to
employ VI – using a learnable distribution q∗(θd) to approximate p(θd|W) with a minimal KL divergence:

q∗(θd) = arg min
q(θd)

KL {q(θd)||p(θd|W)} ≈ arg min
µd,Γd

KL
{
N

(
µd,Γ2

d

)
||p(θd|W)

}
. (2)

• Upper Bound and Sampling: The KL term in (2) is not differentiable w.r.t. µd,Γd. To leverage
back-propagation (BP), KL upper bounding and Monte Carlo sampling are necessary and commonly
used methods to allow gradients w.r.t. µd,Γd to be calculated in a tractable way for the BP updates:
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S
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D

)
+
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d

)
||p(θd)}, (3)

where θ
(s)
d denotes s-th sample drawn from q(θd), and p(θd) = N (0, I) is the Gaussian prior we set.

EXPERIMENTAL SETUP
• Tasks: Penn Treebank (PTB) corpus, Switchboard (SWBD) and AMI meeting speech data
• Measures: Perplexity (PPL) for language modeling and word error rate (WER) for ASR

RESULTS
1) PPL on PTB:
Language Model PPL PPL(+4G)
4-gram 141.7 -
Standard LSTM 114.4 99.7
(P1) GPact as the forget gate 115.2 92.4
(P2) GPact as the input gate 115.1 91.7
(P3) GPact as the cell gate 111.9 88.3
(P4) GPact as the output gate 109.4 88.3
(P5) GPact as the ct gate 111.2 88.2
(P6) GPact as a new gate for ht−1 108.2 88.1
(P7) GPact as a new gate for xt 112.0 90.0

2) PPL and WER on SWBD:

Language Model PPL WER (%)
swbd callhm

4-gram 80.6 12.1 23.9
LSTM 89.3 11.4 23.9
GP-LSTM 87.2 11.3 23.9
4-gram + LSTM 71.7 11.3 23.2
4-gram + GP-LSTM 70.1 11.0 23.1
4-gram + LSTM + GP-LSTM 67.2 10.8 23.0

3) PPL and WER on AMI:

Language Model PPL WER (%)
dev eval

4-gram 111.1 30.4 31.0
LSTM 83.4 29.4 30.0
GP-LSTM 81.2 29.3 29.8
4-gram + LSTM 76.8 29.3 29.8
4-gram + GP-LSTM 74.2 29.0 29.4
4-gram + LSTM + GP-LSTM 71.2 28.7 29.3

CONCLUSIONS
•GP-LSTM RNNLMs consistently showed superior
results over LSTM RNNLMs in terms of both per-
plexity and word error rate.

•GP-LSTM RNNLMs outperformed LSTM
RNNLMs in enhancing N-gram LMs.
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