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RESULTS
1) PPL on PTB:

LSTM CELL GP-LSTM CELL

INTRODUCTION

« Objective:

Improve the state-of-the-art LSTM Recurrent Neu-
raleetworks (RNNLMs) in ASR Language Model PPL PPL(+4G)
4-oram 141.7 -

» Standard LSTM RNNLMs: Standard LSTM 1144 99.7
1) The same form of activation functions for all g fi (P1) GPact as the forget gate 115.9 09 4
nodes in each cell _fg”(a' (P2) GPact as the input gate 115.1 91.7
2) Deterministic weight parameter estimates (P3) GPact as the cell gate 111.9 88.3

. Limitations: (P4) GPact as the output gate 109.4 88.3
1) Need flexibly optimized activation functions for (P5) GPact as the c; gate 11121 8.2
memory gating given different datasets > > (P6) GPact as a new gate for hy_; 1082 88.1

y 8atlllg & e Goncatenate  Duplicate e oot anton. Concatenate  Duplicate (P7) GPact as a new gate for x;  112.0 90.0

2) Prone to over-fitting and poor generalization on
limited training data

» Proposed GP-LSTM RNNLMs:

2) PPL and WER on SWBD:
GAUSSIAN PROCESS ACTIVATION FUNCTION

WER (%)

1) Adopt Gaussian process (GP) to model the un- Language Model PPL 1 callhm
certainty of gcitvation fUHCtiOﬂ? » Standard gate: At the d-th node, any gate can be expressed as gq(z) = ¢(0; ® z), given a fixed A-oram 06 12.1 @ 239
2) Automatically learn the optimal forms of gates activation function ¢(-) and the d-th node’s weight vector 8. LSTM 89.3  11.4 = 23.9
for all hidden nodes in each L5TM cell - Proposed gate: Gaussian process activation function (GPact) at the d-th node is defined as GP-LsTM 87.2 11.3  23.9
K 4-gram + LSTM .7 11.3 | 23.2
94 (2) = [ 3 Aratr (040 2) p(04)WV) dby, (1) 4-gram + GP-LSTM 70.1 11.0 23.1
k=1 4-gram + LSTM + GP-LSTM 67.2 10.8 23.0
where {\rq}Y, are the coefficients for a linear combination of K basis activation functions {on(-)} -,
P(wi|wi-1,hy1) P(Wii1|we, hy) P(Weio|wigr, heiq) and p(04|W) is the posterior given the observed word sequence W =< wq, Wo, ..., Wp >. 3) PPL and WER on AMI:
0e 00 * 0.9 N » Variational Inference (VI): In Bayesian inference p(8,4|W) is intractable, thus it is common to I aneuace Model ppr, WER (%)
Vv, 1 TV v, T \% Vit T \% employ VI — using a learnable distribution g,(6,) to approximate p(84|VV) with a minimal KL divergence: ; SHAS - (31(332 eg\lfa(t)l
XX ecoe o ecoe o (0, = KL L0 0 - KT 2 0 | 5 —gram 1 30. .
0:(8) = g min KL (8,100, W)} = axg min KL (A (1. ) 10, of | e ILT[304] 3T
» Upper Bound and Sampling: The KL term in (2) is not differentiable w.r.t. p,, I'y. To leverage GP-L5TM 81.2129.3/29.8
Cell Cell —» | . . 4-gram + LSTM 76.8 29.3 298
h, h hy back-propagation (BP), KL upper bounding and Monte Carlo sampling are necessary and commonly Loram 4 CPLSTM 7421290 29 4
X, T X1 T used methods to allow gradients w.r.t. u,, I'; to be calculated in a tractable way for the BP updates: Z:—gram LSTM + GP-LSTM 71:2 28:7 29:3
0000..0 0000..0 1 5 T-1 (s) (s) D ,
L=—2> 3 log P (wialwi, b0, 05)) + X KLIN (11, T7) [[p(6)} (3)
Wt U Wt—H U S s=1 t=1 d=1
100‘73?_01... > & Ov?,f = OOOV%;Ol”' ° where HEZS) denotes s-th sample drawn from ¢(6y), and p(84) = N (0,1) is the Gaussian prior we set. CONCLUSIONS

« GP-LSTM RNNLMSs consistently showed superior
results over LSTM RNNLMs in terms of both per-

W;: Input word W; : Input one-hot vector

EXPERIMENTAL SETUP

X¢: Input word vector h; : Hidden vector

plexity and word error rate.

« GP-LSTM  RNNLMs  outperformed LSTM
RNNLMs in enhancing N-gram LMs.

Y. : Output word vector U : Projection matrix

» Tasks: Penn Treebank (PTB) corpus, Switchboard (SWBD) and AMI meeting speech data
» Measures: Perplexity (PPL) for language modeling and word error rate (WER) for ASR

V : Output layer matrix
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