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CO-ATTENTION MECHANISMS

ABSTRACT

Spatial Attention Compositional Attention

Let A®®) = {a,gf?-) :

i,j=1

Facial attractiveness prediction has drawn considerable attention from image processing community. Despite the substantial

progress achieved by existing works, various challenges remain. denotes the learned spatial atten-

We denote the compositional attention vector by:

* One is the lack of accurate representation for facial composition, which is essential for attractiveness evaluation. In this tion. A(®) is used to integrate local activation vectors by:

paper, we propose to use pixel-wise labelling masks as the meta information of facial composition, and input them into a
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network for learning high-level semantic representations. <« =SSN 0%, (1) al®) = (ag"), aé), it agf))j with Z a,g) = L (2)
a &,7 3,_} : (-
* The other challenge is to define to what degree different local properties contribute to facial attractiveness. To tackle this i=1 j=1 =1
challenge, we employ a co-attention learning mechanism to concurrently characterize the significance of different regions (c) b Lt he ith
gndl that of dlstinet Taelsl somponsmnis. x, € R*1280 ig concatenated with the output of the compo- a, ' measures the correlation between the 2" component and

facial attractiveness. Afterwards, al®) is used to integrate the

sition branch, and then used for attractiveness prediction. il _
- pix-wise labelling masks by:

*  We conduct experiments on the SCUT-FBP5500 and CelebA datasets. Results show that our co-attention learning
mechanism significantly improves the facial attractiveness prediction accuracy. Besides, our method consistently produces
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appealing results and outperforms previous advanced approaches.

M,, is input into a network for learning high-level represen-
tation of facial composition, and finally used in attractiveness
prediction.
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Table 1. Network architecture. Each line describes a se-
quence of 1 or more identical layers, repeated n times. All
layers in the same sequence have the same number ¢ of out-
put channels. (This table follows [ 6])

Compositional Attention

EXPERIMENTAL RESULTS
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l % g MobileNetV2 (baseline network)
g0 — 158 Input Layer c n Table 2. Results of ablation study. Table 3. Performance on the SCUT-FBP5500 dataset.
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