

NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN DEEP REINFORCEMENT LEARNING **Zhixiang Wang¹**, Xi Xiao¹, Guangwu Hu², Yao Yao¹, Dianyan Zhang¹, Zhendong Peng¹, Qing Li³, Shutao Xia^{1,3} ¹ Tsinghua University, Beijing, China ² School of Computer Science, Shenzhen Institute of Information Technology, Shenzhenon, China ³ Southern University of Science and Technology, Pengcheng Laboratory, Shenzhen, China

Abstract

Reinforcement learning is a framework to make sequential ▶ **▶ ▶ ▶ ▶ ▶** Softmax decisions. The combination with deep neural networks further Output y improves the ability of this framework. Convolutional neural k(x)networks make it possible to make sequential decisions based on raw pixels information directly and make reinforcement learning achieve satisfying performances in series of tasks. However, Input x convolutional neural networks still have own limitations in v(x)representing geometric patterns and long-term dependencies that Convolutional Convolutional Image Self-attention layer layer laver occur consistently in state inputs. To tackle with the limitation, we propose the self-attention architecture to augment the original Since x_{query} , x_{key} , x_{value} are the same, we just use q(x), k(x), v(x) to network. It provides a better balance between ability to model represent $q(x_{query})$, $k(x_{key})$, $v(x_{value})$ and $s_{ij} = q(x_i)k(x_j)$. The dependencies efficiency. output of the self-attention layer has the same size as the input. When and computational long-range Experiments on Atari games illustrate that self-attention structure rebuilding the element in the *j*th position, $a_{i,i}$ indicates how much attention should be paid to the *i*th location. is significantly effective for function approximation in deep reinforcement learning. $\exp(s_{ij})$

Reinforcement Learning Formulation

In reinforcement learning, the policy $\pi(a|s)$ was represented by a machine learning module. In deep reinforcement learning, this machine learning module is a neural network. State value function and action value function are also represented by machine learning modules (e.g. convolutional neural network) to guide the policy to update itself towards a right direction. Functions $\pi(a|s)$, V(s) and Q(s,a) need to be approximated by proper machine learning modules.

The Proposed Model

The input pixel image is first processed by several convolution layers and transformed into image features $x \in R^{C \times H \times W}$ where C means 'channel', H means 'height' and W means 'width'. x_i represents the element in *i*th position among all the $C \times H \times W$ positions. The input x is duplicated into 3 copies which are query x_{query} , key x_{key} and value x_{value} . Then we do transformation and get $q(x_{query}) = W_{query} x_{query}$, $k(x_{key}) = W_{key} x_{key}$, $v(x_{value}) = W_{value} x_{value}$ separately. The metric W_{query} , W_{key} and W_{value} are the network parameters to be learned.

The output element in the *j*th position is calculated in the following way.

 $C \times H \times W$

Finally, we multiply the output by a parameterized scalar β and add it back to the input feature map. Then we get the final output y_{out} . $y_{out} = \beta y + x$

Experiment

Game	CNN	Self- attention	Game	CNN	Self- attention	Game	CNN	Self- attention
Amidar	275	391	Frostbite	250	251	PrivateEye	64.8	144
Asterix	5588	6510	Gopher	907	924	Qbert	12412	14142
Atlantis	1729268	1958670	Gravitar	335	372	Riverraid	7426	9100
BankHeist	1128	1173	Hero	19462	19957	RoadRunner	32470	32984
BeamRider	4184	4252	IceHockey	-6.8	-6.5	RoboTank	2.2	2.8
Berzerk	766	785	JamesBond	2429	2312	Seaquest	1701	1727
Bowling	23.7	24.1	Kangaroo	559	462	Skilling	-28680	-16189
Breakout	382	387	Krull	7886	7903	SpaceInvader	758	803
Centipede	4178	3812	KungFuMaster	28564	27334	StarGunner	44623	45296
Chopper Command	995	1362	Montezuma's Revenge	0.1187	0.1209	TimePilot	3491	3431
CrazyClimer	103959	105340	MsPacMan	1942	2127	Tutankhan	176	185
DemonAttack	18005	22932	NameThisGame	5658	5750	UpNDown	31341	43661
DoubleDunk	-15.8	-16.1	Phoenix	13188	14938	Venture	0	0
FishingDerby	21.5	16.6	Pitfall	-65.2	-50.3	YarsRevenge	13793	12365
Freeway	0.0017	0.0017	Pong	18.1	19.5	Zaxxon	15.3	21.4

Conclusion

In order to tackle with the weakness of convolutional networks in building up long-range dependencies, in this paper, we incorporate the self-attention mechanism into the deep reinforcement learning framework and propose the self-attention function approximation. This structure can build up relationships among different regions of the state input effectively with satisfying computational efficiency. Our experiments illustrate the effectiveness of the self-attention structure compared with a pure convolutional structure.

