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Abstract

Sensing matrix can be designed with low coherence with the mea-
surement matrix to improve the sparse signal recovery performance
of greedy algorithms. However, most of the sensing matrix design
algorithms are computationally expensive due to large number of
iterations. This paper proposes an iteration-free sensing matrix
design algorithm for multiple measurement vectors (MMV) com-
pressive sensing. Specifically, sensing matrix is designed in the
sense of the local cumulative cross-coherence (LCCC) of the sens-
ing matrix with respect to the measurement matrix when the num-
ber of MMV is sufficient and the sparse signals are of full rank.
Experiment results verify the effectiveness of the proposed algo-
rithm in terms of improving the sparse signal recovery performance
of greedy algorithms.

Introduction

With multiple measurement vectors (MMV) along time instance, the measurement equation of
compressive sensing (CS) can be formulated as

yl = Φxl + nl, l = 1, 2, · · · , L (1)

where Φ ∈ RM×N (M < N) is the measurement matrix, and xl ∈ RN×1, yl ∈ RM×1 and
nl ∈ RM×1 are the vectors of signal, measurement and noise, respectively. Note that (1) can
be compactly represented in the form of matrix

Y = ΦX + N (2)

where X = [x1, x2, · · · , xL] is the jointly sparse signal, Y = [y1, y2, · · · , yL] is the measurement,
N = [n1, n2, · · · , nL] is the measurement noise. In the case of MMV-CS, the vectors {xl}

L
l=1

share the same sparse pattern which means that the matrix X only has a few of rows with
non-zero entries.

Usually, the recovery of the sparse signal from its multiple linear measurements can be
realized by solving the following optimization problem

min
X∈RN×L

∥∥Y − ΦX
∥∥2

F + λR(X ) (3)

where || · ||F indicates the Frobenius norm, R(·) is an operator that gives the number of non-zero
rows of the input signal X . The first term in (3) is the data fidelity term and second one forces
the recovered signal to be sparse. The λ > 0 is a regularization parameter which is the trade-off
between data fitting and the sparsity of signal.

Coherence Measurement of Measurement Matrix and
Sensing Matrix

A generalized parameter to address the coherence of measurement matrices is the cumulative
coherence. The kth cumulative coherence is defined as

µc(k, Φ) = max
|J|=k

∑

i,j=1,2,··· ,N,i /∈J,j∈J

∣∣∣ΦT
.i Φ.j

∣∣∣. (4)

It is proved that µc(k, Φ) + µc(k − 1, Φ) < 1 can guarantee the success of both OMP and BP
algorithms.

The concept of sensing matrix Ψ ∈ RM×N is proposed for support recovery in OMP and
hard thresholding algorithms. The purpose of designing sensing matrix in CS is to reduce the
coherence of sensing and measurement matrices, which can improve the recovery performance.
The process of sparse recovery by using sensing matrix can be expressed as

X̂ = R(Y , Ψ, Φ, · · · ). (5)

The parameter termed as the cumulative cross-coherence (CCC) is proposed to measure the
coherence between Φ and Ψ, defined as

µ̃c(k, Ψ, Φ) = max
i

max
|J|=k,i /∈J

∑

j∈J

∣∣∣ΨT
.i Φ.j

∣∣∣. (6)

It has been proved that the smaller CCC between Ψ and Φ results in higher accuracy of support
recovery. Furthermore, the local cumulative cross-coherence (LCCC) is defined

µ̂c(k, Ψ, ΦΓ) = max
|J|=k,J⊆Γ

max
i /∈J

∑

j∈J

∣∣∣ΨT
.i Φ.j

∣∣∣ (7)

where Γ is the support of sparse signal.
It can be seen from (7) that µ̂c(k, Ψ, ΦΓ) represents the worst case coherence between the

columns of the sensing matrix and measurement columns indexed by the support Γ. In other
words, µ̂c(k, Ψ, ΦΓ) describes the local coherence between the sensing matrix and the measure-
ment matrix, while µ̃c(k, Ψ, Φ) describes the global coherence of the sensing matrix with the
measurement matrix.

Adaptive Sensing Matrix Design

For sufficient multiple measurement vectors, i.e., L ≥ M , the recovered signal is expressed as

X̂ i. =ΨT
.i Y = ΨT

.i (ΦX + N) = ΨT
.i ΦX + ΨT

.i N

=ΨT
.i

[
N∑

j=1
Φ.jX (j, 1),

N∑

j=1
Φ.jX (j, 2), · · · ,

N∑

j=1
Φ.jX (j, L)

]
+ ΨT

.i N

=
[

ΨT
.i Φ.iX (i, 1) + ΨT

.i

N∑

i 6=j,j=1
Φ.jX (j, 1), · · · ,

ΨT
.i Φ.iX (i, L) + ΨT

.i

N∑

i 6=j,j=1
Φ.jX (j, L)

]

+ ΨT
.i N.

(8)

It follows from (8) that in order to exactly recover the jointly sparse signal X , the terms
ΨT

.i Φ.iX (i, 1),· · · ,ΨT
.i Φ.iX (i, L) for i = 1, 2, · · · , N should be kept distortionless for ΨT

.i Φ.i = 1,
while other terms should be minimized. Given the measurements Y , the sensing matrix can be
designed as follows

min
Ψ.i∈RM×1

∥∥∥ΨT
.i Y

∥∥∥
2

2

s.t. ΨT
.i Φ.i = 1.

(9)

The optimization problem in (9) is a quadratic programming problem with a linear constraint.
Its closed form solution is

Ψ.i = R−1Φ.i

ΦT
.i R

−1Φ.i

(10)

where R = 1
L
Y Y T .

Proposition 1 For the SOMP algorithm, the sensing matrix Ψ designed by (10) provides a
decreased LCCC and the bound is

0 ≤ µ̂c(K, Ψ, ΦΓ) ≤ µ̃c(K, Ψ, Φ). (11)

Numerical Simulations

The simulation settings are provided as follows. The sparse signal is generated by Gaussian
distribution with mean one and variance 0.1. The sizes of Φ and Ψ are both 128 × 256. The
entries of Φ are drawn from Gaussian distribution with zero mean and 1/128. In order to
evaluate the performances of the proposed approach, 500 independent trials are carried out at
each specific case. The percentage of successful support recovery and the root mean square
error (RMSE) of recovered signal are both calculated. For the purpose of comparison, the
Alternating Projection (AP) algorithm and Re-weighted (RW) algorithm for sensing matrix design
are performed. The conventional approach Ψ = Φ is also conducted.
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Fig. 1: Simulation results: (1) LCCC versus sparsity of signal with SNR = 20dB and L = 500; (2) Percentage of
successful recovery versus sparsity of signal with SNR = 20dB and L = 500; (3) RMSE versus sparsity of signal

with SNR = 20dB and L = 500.

Conclusion In this paper, an iteration-free sensing matrix design algorithm for MMV-CS
is proposed. To improve the performance of sparse signal recovery, the coherency of Ψ and
Φ as well as that of Ψ and Y are exploited. Comparing with the existing methods of sensing
matrix design, the proposed algorithm is iteration-free and is able to further enhance the
recovery performance. Simulation results confirm the superiority of the proposed approach.
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