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The problem of anomaly detection among multiple processes is 
considered within the framework of sequential design of experiments. The 
objective is an active inference strategy consisting of a selection rule 
governing which process to probe at each time, a stopping rule on when to 
terminate the detection, and a decision rule on the final detection outcome. 
The performance measure is the Bayes risk that takes into account of not 
only sample complexity and detection errors, but also costs associated with 
switching across processes. While the problem is a partially observable 
Markov decision process to which optimal solutions are generally 
intractable, a low-complexity deterministic policy is shown to be 
asymptotically optimal and offer significant performance improvement 
over existing methods in the finite regime. 

Incorporating switching cost into Bayes risk is motivated by a number 
of applications. For example, in many robotics applications, relocating the 
robot (or other autonomous decision makers such as UAVs) incurs 
considerable cost in terms of energy or delay. Another example is medical 
diagnostics, where frequent and fast switching across drugs and medical 
procedures carries high risk and side effects.
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PROBLEM FORMULATION

 THE DBS POLICY

The DBS policy partition the problem space into two regions:

where

which is the offset caused by the switching cost, Δ only affects the 
performance of the DBS policy in the finite regime.

▷ In Case Ⅰ: probes the cell most likely to be the target.

where                                     is the index of the cell with the 
largest sum LLRs.

▷ In Case Ⅱ : probes the cell most likely to be empty and eliminate 
them one by one.

where        is the set of cells that can be declared as empty at time 
n, and                                     is the index of the cell with the smallest 
sum LLRs among all cells that have not been declared. 

 ASYMPTOTIC OPTIMALITY OF THE DBS POLICY

Theorem 1:Let ∗ and denote the Bayes risks in the DBS policy and 
any other policy Γ respectively. Under the assumption that s=O(c), we have:

where

the notion ∼ as → 0 refers to lim → ⁄ = 1

ALGORITHM

 Simulation 1：The DBS policy in M=5, s=2c. The observation follow 
Poisson distribution ~Pois( , y~Pois( , where = 1, = 0.1

We can obtain that ( || ) ≈ 1.4, ( || )/( − 1) ≈0.35, the DBS 
policy is in Case Ⅰ for all value of c. The DBS policy, the Chernoff policy 
and the DGF policy perform similarly because they all observe the cell 
with the largest sum LLRs.

Simulation 2：The DBS policy in M=5, s=2c. The observation follow 
Poisson distribution ~Pois( , y~Pois( , where = 1.5, = 0.001

We can obtain that ( || ) ≈ 1.49, ( || )/( − 1) ≈ 2.37, the 
dashed rectangular area of Fig.4(a) and Fig.4(b) showed that the 
observation delay and the switching ratio change suddenly when −log =
24. The reason is that DBS policy is in Case Ⅰ when −log < 24.2. 
Although the policy will result in more observations, which can reduce  
the number of switching. The DBS policy will change to Case Ⅱ when 
− log > 24.2. which will increase the number of switching and reduce 
observation delay. It is showed that the DBS policy is optimal among 
algorithms.

NUMERICAL RESULTS CONCLUSION

The problem of anomaly detection with switching cost is studied. We 
propose a low-complexity deterministic test for the above active 
hypothesis testing problem with switching cost. Referred to as the 
Deterministic Bounded Switching (DBS) policy, the proposed policy 
explicitly specifies the probing action at each time with little computation. 
Specifically, the policy is based on a key criterion that integrates all 
parameters affecting the Bayes risk: the number M of cells, the switching 
cost s, the observation cost c, and the rates at which the target cell and 
normal cells can be identified as given by the Kullback-Liebler (KL) 
divergences between the corresponding observation distributions. This 
criterion partitions the problem space into two cases. In one case, the DBS 
policy probes the cell most likely to be the target. In the other, DBS probes 
cells that are likely to be normal and eliminates them one at a time to 
reduce the number of switching.  The DBS policy is simple, intuitively 
appealing, yet enjoys asymptotic optimality and strong performance in the 
finite regime as demonstrated in the simulation examples. Future 
directions include extensions to cases with multiple targets and 
simultaneous probing of multiple cells. 
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 Consider the problem of detecting a target among M cells. At each time, 
only one cell can be probed. Let denote the hypothesis that the 
target is in cell m.

 Noisy observations from a probed cell:

▷ If the cell contains a target:  ( ) ∼   ( )

▷ If the cell is empty,:  ( ) ∼   ( )

 The test statistic is the log-likelihood ratio (LLR) of each cell m denoted 
as:

≜ log
( ( ))
( ( ))

.

▷ If ( ) ∼   ( ): = ( || ) > 0

▷ If ( ) ∼   ( ): = − ( | < 0

 Sum of the Log Likelihood Ratio (sum LLRs) can be regarded as the 
score of whether the region has a target:

 Find an anomaly detection policy Γ = ( , , )

▷ Selection Rule: ( ) ∈ {1,2, . . . ,
▷ Stopping Rule:  
▷ Decision Rule:  ∈ {1,2, . . . ,

 To minimize the Bayes risk:
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Fig.2 Illustration of the DBS policy (M=5)

Fig.1 The change of sum of the log likelihood ratio
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(a) The number of observations (b) The switching ratio

(c) The error probability (d) The relative loss of Bayes risk

(a) The number of observations (b) The switching ratio

(c) The error probability (d) The relative loss of Bayes risk

Fig.3 The DBS policy in M=5, s=2c,  = 1, = 0.1

Fig.4 The DBS policy in M=5, s=2c,  = 1.5, = 0.001


