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Introduction

• Tackle privacy risks encountered in Acoustic Sensor Network applications

• Illustrate concept with a smart office and challenging competing goals scenario

• Balance competing goals: utility (gender discrimination) & privacy (speaker identification)
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Defender vs. Attacker

• Previous work [1]:

– traditional feature representation carries significant speaker-dependent data

– adversarial feature extraction successfully used but depends on attacker configuration

• More general approach: privacy-aware variational information feature extraction:

– inspired by variational information autoencoders [2] which use information minimization

– the encoding variable is a compact stochastic feature representation

– the proposed system is described in Fig. 1

Train defender
• Z should lead to good gender discrimination accuracy while reducing task-extraneous data:

min
Φc,Φµ,Φσ,Φg

EΓt∼p(Γt)[− log p(Γ)] + βI(X ; Z) (1)

– Φ indicates weights and biases; Γt and Γ are true and predicted gender labels

– I(X ; Z) is the mutual information between input set X and encoding set Z

– β is a budget scaling factor for controlling information minimization

• I(X ; Z) is computationally challenging, find analytical upper bound Imax(X ; Z) ≥ I(X ; Z):

I(X ; Z) =

∫
p(x, z) log p(z|x)dxdz −

∫
p(z) log p(z)dz (2)

– construct encoding variable z = σ(c(x)) · ǫ + µ(c(x)), where ǫ ∼ N (0, I)

– now p(z|x) follows a Gaussian distribution N (µ(c(x)), σ(c(x)))

– backpropagation can be efficiently performed by updating Φµ and Φσ [3]
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FIGURE 1: Flow chart of privacy-aware feature extraction for gender discrimination vs. speaker identifi-

cation. Here f is composed of a CNN structure c and dense layers µ and σ which use stochastic sampling

to transform LMBE feature set X into set Z. The MLP structure g then estimates the gender class labels’

probabilities P (Γ). The MLP structure a intercepts Z and estimates the speaker labels’ probabilities P (Σ).

- introduce variational distribution q(z) ∼ N (0, I) and benefit from KL(p(z)||q(z)) ≥ 0

- combine above inequality with (2) and get I(X ; Z) ≤ KL(p(z|x)||q(z)) = Imax(X ; Z)

• Rewrite (1) as:
min

Φc,Φµ,Φσ,Φg

EΓt∼p(Γt)[− log p(Γ)] + βImax(X ; Z) (3)

Train attacker
• White-box attack: concatenate already trained feature extractor f with speaker identifier a

• Keep Φc, Φµ, Φσ fixed and only update Φa

• Minimize cross-entropy between speaker labels’ true P (Σt) and estimated P (Σ) probability
distributions:

min
Φa

EΣt∼p(Σt)[− log p(Σ)] (4)
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FIGURE 2: Network architecture for privacy-aware variational information feature extraction.

Experimental Results
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FIGURE 3: Division of training (Tr.), evaluation (Ev.) and testing (Te.) data using the WSJ corpus with

5 groups of 20 speakers and the TIMIT corpus with 21 groups of 20 speakers.
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FIGURE 4: The influence of the budget scaling factor β on gender discrimination and speaker identification

accuracy using the WSJ and TIMIT data sets. For β = 0 no information minimization is applied.

Conclusions and Outlook

• Speaker identification risks can be drastically reduced without significantly
deteriorating gender discrimination accuracy

• Each input X gets mapped to a distribution rather than a unique Z which in turn,
controlled by β, ignores as many details of X as possible

• Proposed concept can be further expanded to other utility vs. privacy applications
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