Optimization of Speaker Extraction Neural Network with Magnitude and Temporal Spectrum Approximation Loss

1. Contributions

We propose a speaker extraction approach to extract target speaker's voice from a multi-talker mixture. Our contributions are:

- a magnitude and temporal spectrum approximation loss that calculates direct signal reconstruction error and considers the speech context;
- a concatenation framework that encodes speaker characteristics into the mask estimation network instead of context adaptive deep neural network (CADNN) in SpeakerBeam-FE (SBF) method [1];

2. Speaker Extraction

• **Problem Formulation**

The speech extraction aims to extract the target speaker's voice x(n) from a multi-talker mixture y(n) given a different speech segment a(n) of the target speaker. The mixed signal is,

$$y[n] = x[n] + \sum_{i=1}^{I} z_i[n]$$
(1)

where $z_i[n]$ might be any number of interference speech or background noise.

• Frequency Domain Solution

a). With the spectra of mixed signal |Y| and enroll signal |A|, the mask M for target speaker is always estimated by a network using either mask approximation loss or spectrum approximation loss.

$$M = G(|Y|, |A|) \tag{2}$$

b). The magnitude $|\hat{X}|$ of the target speaker is obtained by,

$$|\hat{X}| = M \odot |Y| \tag{3}$$

c). The time domain signal \hat{x} of target speaker is reconstructed by overlap-and-add algorithm after doing iSTFT on estimated magnitude $|\hat{X}|$ and noisy phase $\angle Y$.

Chenglin Xu^{1,2}, Wei Rao³, Eng Siong Chng^{1,2}, Haizhou Li^{2,3} School of Computer Science and Engineering, Nanyang Technological University, Singapore ² Temasek Laboratories@NTU, Nanyang Technological University, Singapore ³ Department of Electrical and Computer Engineering, National University of Singapore, Singapore

3. System Architectures

• SBF Method [1]

4. SBF-MTSAL-Concat Method

• Magnitude and Temporal Spectrum Approximation Loss

$$J = \frac{1}{T} \sum (||M \odot |Y| - |X| \odot \cos(\theta_y - \theta_x)||_F^2 + w_d ||f_d(M \odot |Y|) - f_d(|X| \odot \cos(\theta_y - \theta_x))||_F^2 + w_a ||f_a(M \odot |Y|) - f_a(|X| \odot \cos(\theta_y - \theta_x))||_F^2 (4)$$

• The Concatenation Framework

The extracted magnitude $|\hat{X}|$ and time domain signal \hat{x} of target speaker are,

$$|\hat{X}| = M \odot |Y|$$

= $G(\sigma([BLSTM(|Y|); g(|A|)])) \odot |Y|$ (5)

$$\hat{x} = OLA(iSTFT(|\hat{X}| \cdot e^{\angle Y}))$$

(6)

7. Acknowledgements

This research is supported by the National Research Foundation Singapore under its AI Singapore Programme (and other co-funders, where applicable). [AISG-100E-2018-006].

5. Discussion

• Unlike speech separation techniques, the number of speakers is not necessary in the speaker extraction.

• Although the target speaker characteristic is needed, this speaker extraction technique is practical to the applications where only registered speakers need to be responded.

• For example, speaker verification application [2].

6.	Expe
٠	Closed
	-SBF SBF-MTSAL
•	Differer
	SBF-M
•	Visualiz
8	Key
[1]	M. Delcr
	Nakatani Recognit
[2]	W Rac

eriments

Condition vs. Open Condition

Mothod	Paras	C	CC	OC		
Wiethou	1 4145	SDR	PESQ	SDR	PESQ	
Mixture	-	2.60	2.32	2.60	2.31	
SBF [1]	19.3M	6.48	2.30	6.45	2.32	
-MTSAL	19.3M	10.36	2.69	9.90	2.66	
L-Concat	8.9M	11.39	2.77	10.99	2.73	

nt Gender vs. Same Gender

Method	SI	DR	PESQ		
wiethod	Diff.	Same	Diff.	Same	
Mixture	2.51	2.69	2.29	2.34	
SBF [1]	7.61	5.13	2.42	2.19	
SBF-MTSAL	12.27	7.17	2.85	2.44	
ATSAL-Concat	12.87	8.84	2.90	2.54	

zation: Female-Female Example

(a) Mixture

(b) Extracted Target Speaker

CONTRACT OF A CO	The second secon	Street Street		ITT PERSONAL CONTRACTOR			HILING	THE PART OF	THERE (
	(c) Clean Target Speaker										

Press and			
THE PARTY	ACC -		

References

oix, K. Zmolikova, K. Kinoshita, A. Ogawa and T. Single Channel Target Speaker Extraction and tion with Speaker Beam. In *ICASSP2018*

[2] W. Rao, C. Xu, E. S. Chng and H. Li, Target Speaker Extraction for Multi-Talker Speaker Verification. Submitted to *Interspeech* 2019, arXiv preprint arXiv:1902.02546