

Universität

Stuttgart



## **1. INTRODUCTION**

#### Motivation

- Artificial neural networks suffer from catastrophic forgetting without protection mechanisms
- Methods proposed in literature mostly cover supervised and reinforcement learning problems
- Anomaly detection can also benefit from continual learning
- Using a Variational Autoencoder (VAE) for anomaly detection is a common method
- Generative capabilities of VAE are unused during anomaly detection

#### **Problem Formulation**

- **Given:** Sequence of data sets  $\mathcal{D}^1, \ldots, \mathcal{D}^N$  of normal data, where  $\mathcal{D}^i$  represents the *i*th task
- Goal: Train a VAE for anomaly detection continually on all tasks
- **Restriction:** While training of task *i* only data set  $\mathcal{D}^i$  is available



Time instance  $T_0$ 

#### Contribution

- We propose an effective method for continual learning in anomaly detection with VAE
- Evaluation of proposed method on common data sets
- Study of degeneration effects

#### **2. ANOMALY DETECTION USING** VAE

- Given dataset  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  of i.i.d. normal data
- VAE learns  $\ln p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{i=1}^N \ln p(\mathbf{x}_i)$  by maximizing Evidence Lower Bound (ELBO)

 $\mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[ \ln p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) \right] - D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ 

Distributions  $q_{\phi}(\mathbf{z}|\mathbf{x})$  and  $p_{\theta}(\mathbf{x}|\mathbf{z})$  are parameterized by encoder and decoder neural networks and p(z)is a simple prior distribution

ICASSP 2019, May 12-17, Brighton, UK

# **CONTINUAL LEARNING FOR ANOMALY DETECTION WITH** VARIATIONAL AUTOENCODER

# Felix Wiewel and Bin Yang

Institute of Signal Processing and System Theory, University of Stuttgart, Germany

- After training an anomaly score is defined as  $AI(\mathbf{x}) = \mathcal{L}(\boldsymbol{\phi}^{\star}, \boldsymbol{\theta}^{\star}; \mathbf{x})$
- A threshold based detector  $AI(\mathbf{x}) < \gamma$  is used to detect anomalous samples

# **3. PROPOSED METHOD**

#### Key observations

- After training on a data set  $\mathcal{D}$  we can use  $p_{\theta}(\mathbf{x}|\mathbf{z})$ and the prior  $p(\mathbf{z})$  to generate samples
- When using the VAE for anomaly detection,  $p_{\theta}(\mathbf{x}|\mathbf{z})$  is only used to compute anomaly score
- We propose to use  $p_{\theta}(\mathbf{x}|\mathbf{z})$  and the prior  $p(\mathbf{z})$  to efficiently implement deep generative replay
  - We start with training a VAE on  $\mathcal{D}^1$
- For the following data sets we use  $p_{\theta^1}(\mathbf{x}|\mathbf{z})$  and the prior  $p(\mathbf{z})$  to generate replay data for every batch of training samples and concatenate both
- The amount of replay data in a training batch controls retention of previous tasks

| $ \underbrace{ \begin{array}{c} \underline{Task:} i - 1 \\ \theta^{i-2} \end{array} }_{\mathcal{N}(0, \mathbf{I}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-++}) } \mathcal{D}^{i-1} \\ \mathcal{N}(0, \mathbf{I}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-++}) \rightarrow (\mathbf{-+++}) \\ \mathcal{N}(0, \mathbf{I}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-+++}) \rightarrow (\mathbf{-++++}) \\ \mathcal{N}(0, \mathbf{I}) \rightarrow (\mathbf{-++++}) \rightarrow (\mathbf{-++++}) \rightarrow (\mathbf{-+++++}) \\ \mathcal{N}(0, \mathbf{I}) \rightarrow (\mathbf{-++++++}) \rightarrow (\mathbf{-++++++}) \\ \mathcal{N}(0, \mathbf{I}) \rightarrow (-++++++++++++++++++++++++++++++++++++$ |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Training process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| <b>Require:</b> Sequence of datasets $\mathcal{D}^1, \ldots, \mathcal{D}^N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| while Task $t \neq N$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| if Task $t = 1$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| while Not converged do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Sample a batch ${\cal B}$ from ${\cal D}^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Update VAE on $\mathcal{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| end while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| while Not converged do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Sample a batch $\mathcal{B}$ from $\mathcal{D}^t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Generate a batch $\mathcal{B}_{GR}$ of replay data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Update VAE on concatenation of $\mathcal{B}$ and $\mathcal{B}_{GR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| end while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| end if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Copy weights of VAE decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| t = t + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| end while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

## **4. EXPERIMENTS**

Data sets KDD Cup 1999

- Intrusion detection, 22 attacks, one normal class
- $\sim 4.9$  million raw TCP dumps with 41 features
- Categorical values are mapped to interval [0, 1]
- MNIST
- Handwritten digit classification
- 60000 training and 10000 test images with dimension  $28 \times 28 \times 1$

## **Continual learning tasks**

- KDD CUP 1999
- Start with normal class from data set
- Each task expands this definition by one attack
- MNIST
- Start with digit 0 as normal class
- Each task expands this definition by the next higher digit
- The proposed method, using Generative Replay (GR), is compared with Elastic Weight Consolidation (EWC)
- Upper Bound (UB) is given by joint training on all previous data sets  $\mathcal{D}^j$  with  $j \leq i$
- Lower Bound (LB) is given by a original VAE

### Study of degeneration effects

- Capacity of the VAE is limited, i.e. replayed data is not perfect
- At first the VAE is trained on the latest task of each data set, performance on this task is considered a baseline (KDD Cup 1999: KB, MNIST: MB)
- The VAE is trained with repeated generative replay on the same task, which leads to a degradation of performance (KDD Cup 1999: KDG, MNIST: MDG)

## **VAE ARCHITECTURE**

- Fully connected
- Symmetric structure

#### Network architecture

| Layer  | Neurons | Activation function |
|--------|---------|---------------------|
| Input  | 784     | -                   |
| Enc0   | 400     | ReLU                |
| Enc1   | 300     | ReLU                |
| Enc2   | 200     | ReLU                |
| Enc3   | 100     | ReLU                |
| Latent | 50/50   | -/Softplus          |
| Dec0   | 100     | ReLU                |
| Dec1   | 200     | ReLU                |
| Dec2   | 300     | ReLU                |
| Dec3   | 400     | ReLU                |
| Output | 784     | Sigmoid             |







# 6. CONCLUSION

- VAE suffers from catastrophic forgetting
- We propose an effective method for continual learning of anomaly detection with VAE
- Evaluations indicate, that catastrophic forgetting can be mitigated
- Due to limited capacity of the VAE a degradation of performance can be observed during continued generative replay