Reduced Complexity Image Clustering based on Camera Fingerprints

POLITECNICO **DI TORINO**

Introduction

- Digital images have brought tremendous changes in human life
- Documenting news
- Sharing life events on social media
- Providing evidence in the court of law
- At the same time, forensic analysis of images faces various problems
- Source identification
- Tampering detection
- Grouping according to a common source
- Unique camera fingerprints can help solving the above mentioned tasks
- Each acquisition device leaves unique intrinsic traces
- Photo Response Non Uniformity (PRNU) is the more relevant among them [1][2]
- PRNU is unique, stable and multiplicative in nature

Figure 1: Camera fingerprint

Problem: clustering images according to the source device. The clustering is done without any prior information about

- The source camera
- Number of source cameras
- Number of images captured with an individual camera

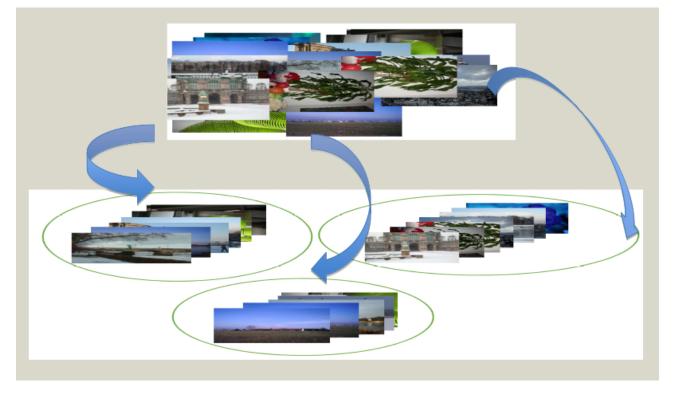


Figure 2: Image clustering.

Challenges:

- High I/O and computational costs
- Large memory requirements
- Number of clusters $(NC) \gg$ size of clusters (SC)

Objective: simple algorithm with reduced complexity

Sahib Khan, Tiziano Bianchi

Department of Electronics and Telecommunication, Politecnico di Torino, Italy sahib.khan@polito.it, tiziano.bianchi@polito.it

Basic Concepts

- Estimate and standardize camera fingerprints [1]
- $M = \{F_i | F_i = \Phi(X_i D(X_i)), i = 1, \dots n\}$
- D(.) is the denoising function
- $\Phi(.)$ normalizes to zero mean unit norm
- Compute NCC between F_i and reference RF_k • $\rho(i) = \frac{1}{d} \sum_{j=1}^{d} RF_k[j]F_i[j]$
- Compute threshold
- $T = \sqrt{2/d} \ erfc^{-1}(2 \times PFA)$
- *PFA* is the desired probability of false alarm
- If ρ between F_i and RF_k is greater than T then they belong to the same camera

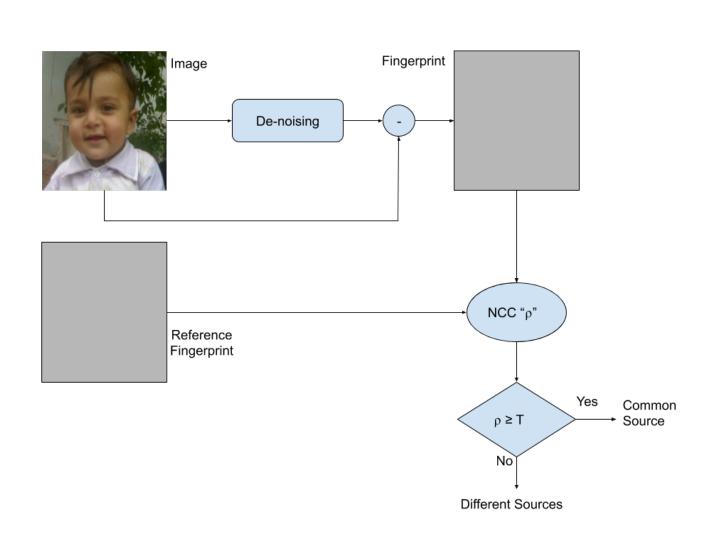


Figure 3: Fingerprint estimation and matching

RCIC Algorithm

Initialize

- Set of unclustered fingerprints equal to M
- *k* = 1

Repeat

- Randomly select one unclustered fingerprint as reference RF_k and assign it to cluster C_k
- For each unclustered fingerprint F_i
- Compute NCC ρ between RF_k and F_i
- If $\rho \geq T$, the fingerprint F_i is assigned to cluster C_k , otherwise F_i is left unclustered

```
• k = k + 1
```

Until all fingerprints are assigned to a cluster C_k

Attraction stage (optional)

- For each C_k an average reference fingerprint ARF_k is computed by averaging all fingerprint in C_k and normalizing the result to zero mean and unit norm
- k = 1

Repeat

- k = k + 1

- D1: 25 cameras, each contributing 40 images
- **D2**: 25 cameras, with 20, 30, 40, 50 and 60 images
- **D3**: 50 cameras, each contributing 20 images
- **D4**: 50 cameras, with 10, 15, 20, 25 and 30 images
- All the images are center cropped to 1023×1023

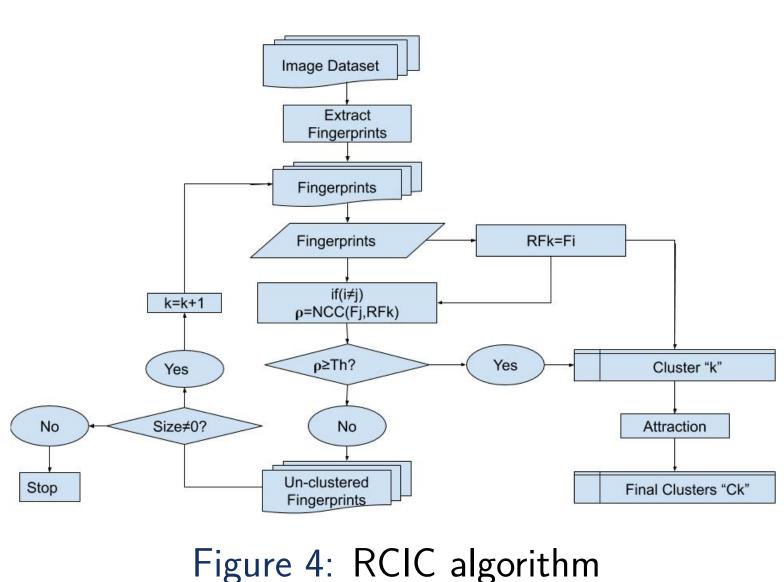
RCIC Algorithm (Cont...)

• Randomly select one non-merged ARF_i as reference RF_k • For each non-merged ARF_i

• Compute NCC ρ between ARF_i and RF_k

• If $\rho \geq T$, merge ARF_i and RF_k clusters, otherwise left ARF_i non-merged

Until all ARF_k corresponding C_k are either treated as RF_k or merged with some other cluster



Experimental Results

Dresden dataset is used for experiments

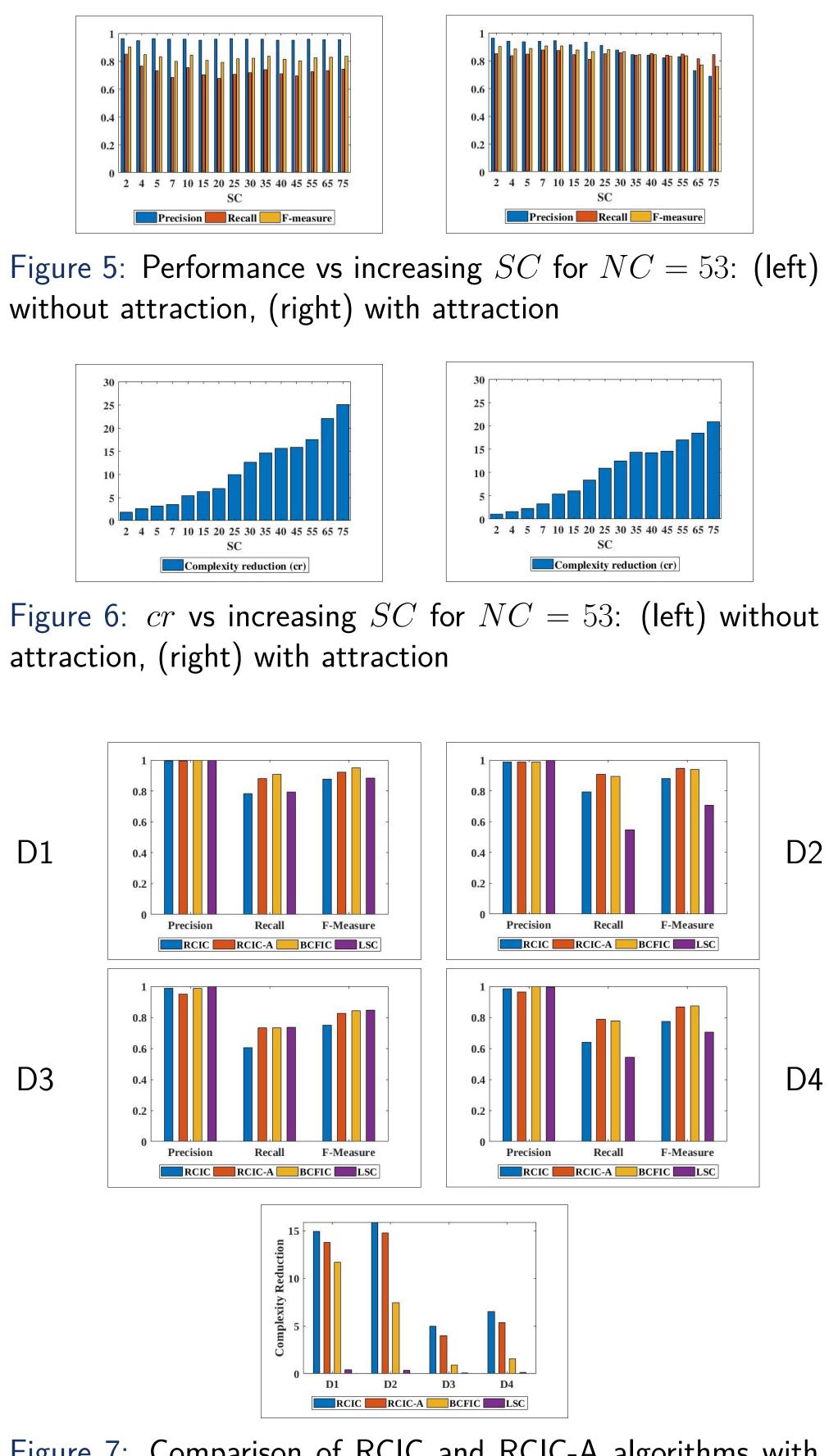
Performance metrics

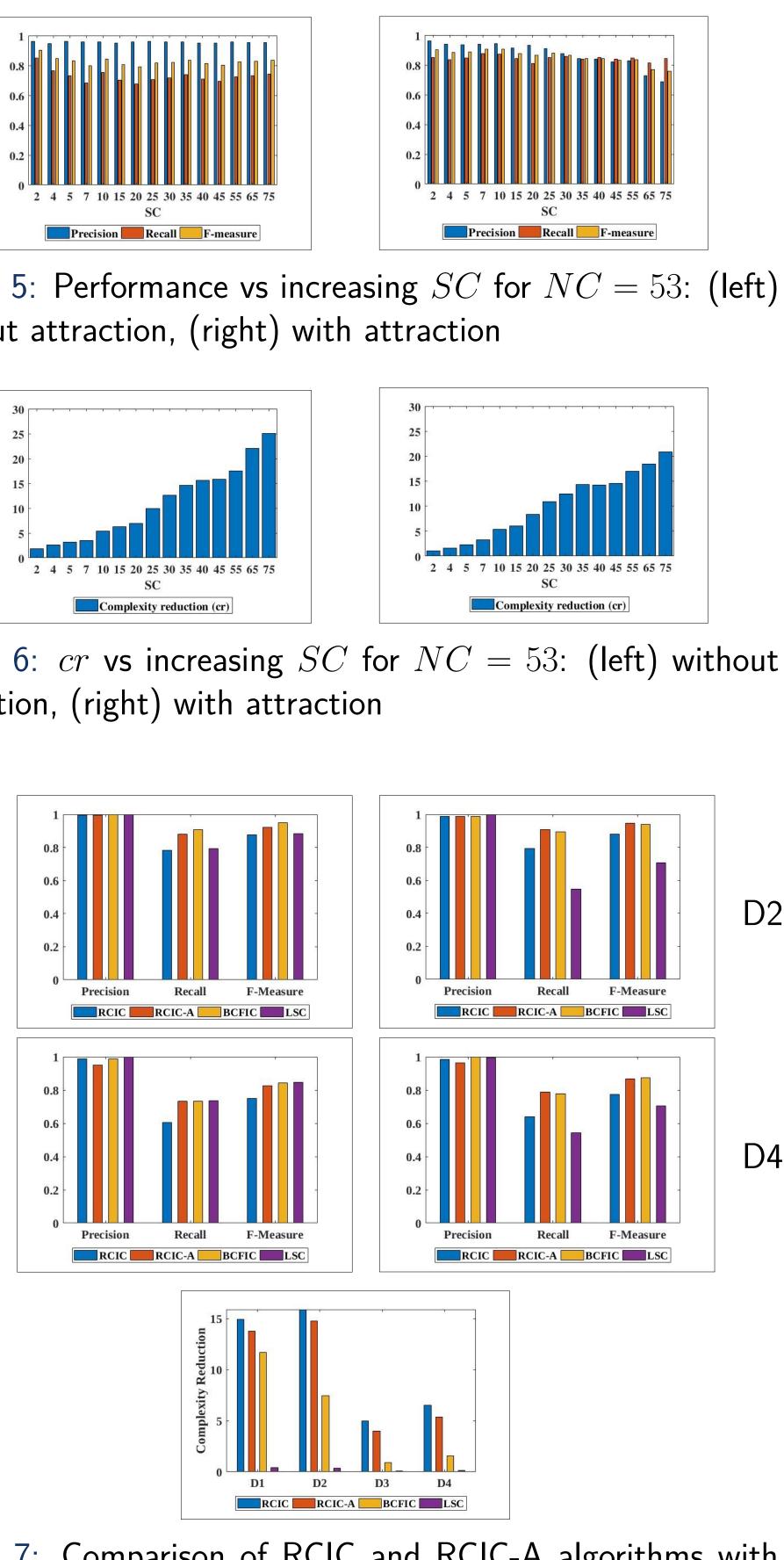
• $P = \frac{\sum_{k} (max_j | c_k \cap \omega_j |)}{\sum_{k} |c_k|} \quad R = \frac{\sum_{j} (max_k | c_k \cap \omega_j |)}{\sum_{j} |\omega_j|}$ • ground truth classes $\Omega = \{\omega_1, \omega_2, \omega_3, \dots, \omega_{NC}\}$ • generated clusters $C = \{c_1, c_2, c_3, ..., c_y\}$ • $F = 2 \times \frac{(P \times R)}{(P+R)}$ $cr = \frac{n \times (n-1)}{2 \times t_0}$ • The probability of false alarm PFA is set to 10^{-6}

Table 1: Variance of evaluation metrics for different No. of experiments

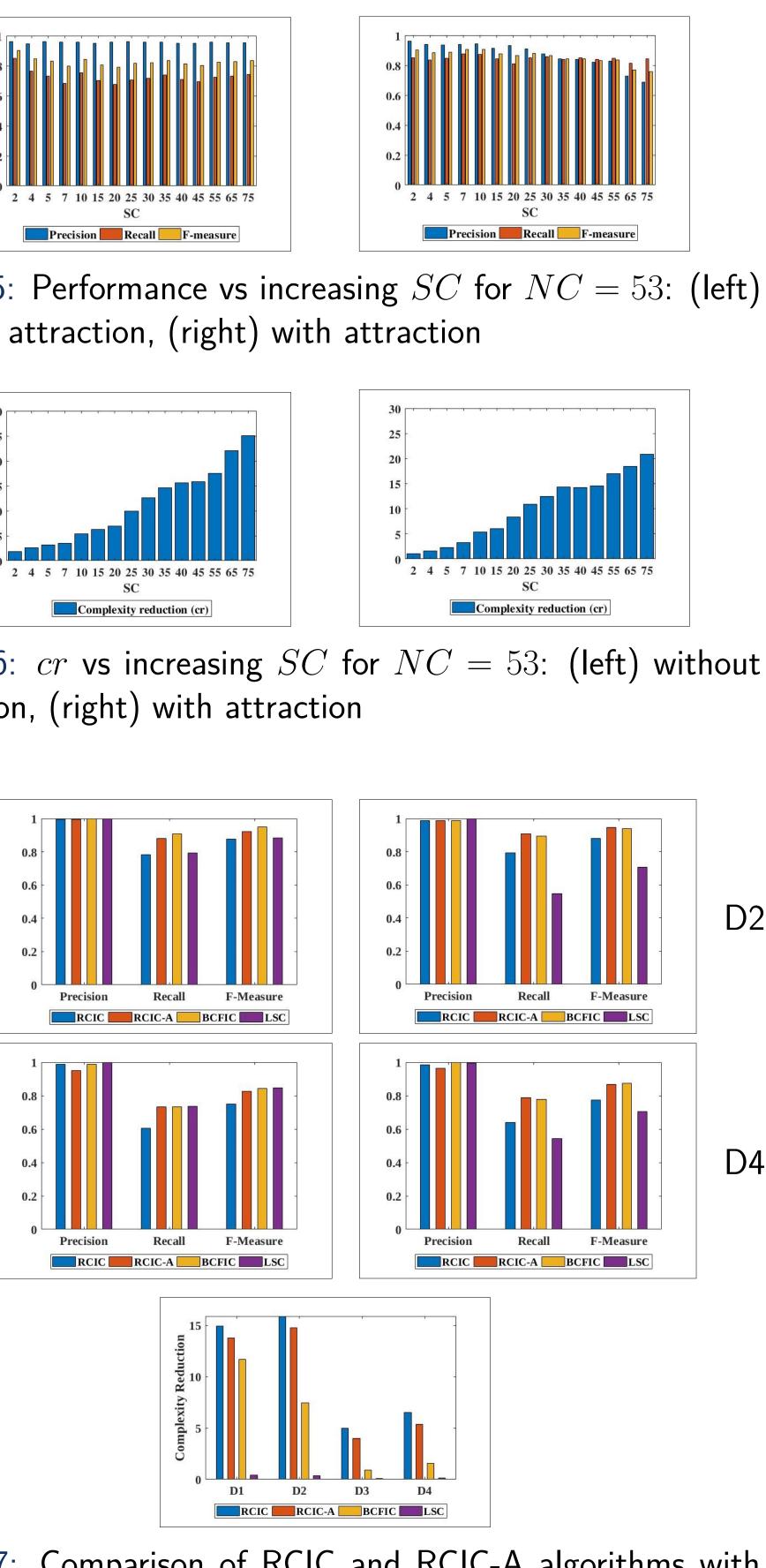
No.	of Exp.	$\sigma^2(\mathbf{P})$	$\sigma^2(\mathbf{R})$	$\sigma^2(\mathbf{F})$
25		1.3×10^{-6}	1.5×10^{-4}	6.0×10^{-5}
20		2.0×10^{-5}	1.8×10^{-4}	7.5×10^{-5}
15		1.8×10^{-6}	1.4×10^{-4}	5.1×10^{-5}
10		4.5×10^{-6}	1.1×10^{-4}	4.2×10^{-5}

Experimental Results (Cont...)





D1



D3

Figure 7: Comparison of RCIC and RCIC-A algorithms with BCFIC [3] and LSC [4] algorithms

- 74-90.

References

[1] M. Chen, J. Fridrich, M. Goljan and J. Lukás, 2008. *Determining image origin and* integrity using sensor noise, IEEE Trans. Inf. Forensics Security, vol. 3, no.1, pp.

[2] J. Lukás, J. Fridrich and M. Goljan, 2006. *Digital camera identification from sensor* pattern noise, IEEE Trans. Inf. Forensics Security, vol. 1, no.2, pp. 205-214.

[3] G.J. Bloy, 2008. *Blind camera fingerprinting and image clustering*, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 532-534.

[4] X. Lin and C. T. Li, 2017. Large-scale image clustering based on camera fingerprints, IEEE Trans. Inf. Forensics Security, vol. 12, no. 4, pp. 793-808.