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Introduction

= Digital images have brought tremendous changes in human

life

« Documenting news

= Sharing life events on social media

= Providing evidence in the court of law

= At the same time, forensic analysis of images faces various

problems

= Source identification

= Tampering detection

« Grouping according to a common source

= Unique camera fingerprints can help solving the above
mentioned tasks
« Each acquisition device leaves unique intrinsic traces
= Photo Response Non Uniformity (PRNU) is the more
relevant among them [1][2]
« PRNU is unique, stable and multiplicative in nature

Figure 1: Camera fingerprint

Problem: clustering images according to the source device.

The clustering is done without any prior information about

= [he source camera
= Number of source cameras

= Number of images captured with an individual camera

Figure 2: Image clustering.

Challenges:
= High 1/O and computational costs

= Large memory requirements
= Number of clusters (NC') > size of clusters (SC)

Objective: simple algorithm with reduced complexity

Basic Concepts

= Estimate and standardize camera fingerprints [1]
M = {E|F, = (X, - D(X,)).i = 1,...n}
« D(.) is the denoising function
= O(.) normalizes to zero mean unit norm

= Compute NCC between F; and reference RFj;
s p(i) = 3 X5 RE[J] ]

= Compute threshold
T = m erfc (2 x PFA)
« PF'A is the desired probability of false alarm

= |If p between F; and RFj}. is greater than 1’ then they
belong to the same camera
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Figure 3: Fingerprint estimation and matching

RCIC Algorithm

Initialize

= Set of unclustered fingerprints equal to M

= k=1

Repeat

= Randomly select one unclustered fingerprint as reference

RF}. and assign it to cluster C},

= For each unclustered fingerprint F;

« Compute NCC p between RF}. and F;
= If p > T, the fingerprint F; is assigned to cluster (Y},
otherwise F; is left unclustered

ch=k+1

Until all fingerprints are assigned to a cluster C},

Attraction stage (optional)

= For each (. an average reference fingerprint ARFE}. is
computed by averaging all fingerprint in C. and
normalizing the result to zero mean and unit norm

k=1

RCIC Algorithm (Cont...)

Repeat

= Randomly select one non-merged ARF; as reference RF;

= For each non-merged ARF;

« Compute NCC p between ARF; and RF},
«If p > T, merge ARF; and RF}. clusters, otherwise left
ARF; non-merged

ch=Fk+1

Until all ARFj, corresponding C), are either treated as RF}. or
merged with some other cluster
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Figure 4: RCIC algorithm

Experimental Results

Dresden dataset is used for experiments

= D1: 25 cameras, each contributing 40 images
= D2: 25 cameras, with 20, 30, 40, 50 and 60 images
= D3: 50 cameras, each contributing 20 images
= D4: 50 cameras, with 10, 15, 20, 25 and 30 images

= All the images are center cropped to 1023 x 1023

Performance metrics
. P — > _ilmazj|epNw;|) R — 2_j(mazy|cpNwj|)
>kl > lwjl
= ground truth classes () = {wq, wo, w3, ...wWNc}
- generated clusters C' = {c}, ¢, c3, ...Cy }

PxR nx(n—1
TR g

= The probability of false alarm PF A is set to 107°

Table 1: Variance of evaluation metrics for different No. of
experiments

No. of Exp. o*(P) o°(R) o°(F)

25 1.3x 1079 1.5 x107* 6.0 x 107
20 2.0x107° 1.8 x 1074 7.5 x 107°
15 1.8%x107%14%x107*5.1x107°
10 45%x 1079 1.1 x 107* 4.2 x 107°
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Figure 5: Performance vs increasing SC' for NC' = 53: (left)
without attraction, (right) with attraction
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Figure 6: ¢r vs increasing SC' for NC' = 53: (left) without
attraction, (right) with attraction
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Figure 7: Comparison of RCIC and RCIC-A algorithms with
BCFIC [3] and LSC [4] algorithms
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