

University of Stuttgart Germany

Summary

We present findings on how representation learning on large unlabeled speech corpora can be beneficially utilized for speech emotion recognition (SER). Evaluation is done by means of within- and cross-corpus testing.

Main findings:

- Integrating representations learned by unsupervised autoencoder improves emotion classification
- Autoencoder representations bear emotional informa**tion** (especially arousal dimension)
- Consistent improvements for within- and cross-corpus evaluation

Methods

- Train time-recurrent sequence-to-sequence autoencoder on spectrograms from large speech corpus (auDeep toolkit [1])
- Generate latent representations for emotional speech (2)
- Train attentive convolutional neural network (ACNN) [2] with **3**) those representations as additional feature vector

Improving Speech Emotion Recognition with Unsupervised Representation Learning on Unlabeled Speech

Speech Corpora

- IEMOCAP [3] 5,531 utterances from 10 speakers,
 - classes {angry, happy, neutral, sad}
- MSP-IMPROV [4] (only for evaluation) 7,798 utterances from 12 speakers, same 4 classes
- Tedlium r2 [5] 207 hours (92,973 utterances)
- Librispeech [6] 100 hours subset (28,539 utterances)

Experimental Results

Baseline

- ACNN without additional representations
- 5-fold cross validation (speaker-independent) for IEMOCAP

Autoencoder (AE) training on 4 datasets

- a) 'Control condition': AE trained on IEMOCAP itself (respectively MSP-IMPROV) – no additional data source
- b) 'small Tedlium': AE trained on subset of Tedlium (400 Ted talks, 25,303 segments)
- c) 'Librispeech': AE trained on 100 hours Librispeech data
- d) 'full Tedlium': AE trained on 207 hours of speech

Unweighted average recall (UAR), averaged over 10 runs of the experiments for each setting

	IEMOCAP	MSP-
		(cross
Baseline	58.03	4
a) Control	58.07	4
b) small Ted	58.85	4
c) Librispeech	59.05	4
d) full Ted	59.54	4

 \rightarrow Consistent improvements when adding representations generated by different AE models b), c), and d)

Visualization of Speech Representations

- ACNN: angry and sad separated to certain extend; high-variance cluster for happy
- ACNN: much more discriminativ
- AE: similar patterns despite no e
- $\bullet \rightarrow AE$ implicitly learns to separat
- Both representations are invaria tity (no separable clusters found

Selected References

- [1] Michael Freitag, Shahin Amiriparian, et al., "audeep: Unsupervised learning of representations from audio with deep recurrent neural networks," The Journal of Machine Learning Research, vol. 18, no. 1, 2017.
- [2] Michael Neumann and Ngoc Thang Vu, "Attentive con volutional neural network based speech emotion recog nition: A study on the impact of input features, signal length, and acted speech," in Proc. of Interspeech, 2017.
- [3] Carlos Busso, Murtaza Bulut, et al., "lemocap: Interactive emotional dyadic motion capture database," Language resources and evaluation, vol. 42, no. 4, 2008.
- [4] Carlos Busso, Srinivas Parthasarathy, et al., "Mspimprov: An acted corpus of dyadic interactions to study emotion perception," IEEE Transactions on Affective *Computing*, vol. 8, no. 1, 2017.
- [5] Anthony Rousseau, Paul Deléglise, and Yannick Esteve, "Enhancing the ted-lium corpus with selected data for language modeling and more ted talks.," in Proc. of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), 2014.

IMPROV

- s-corpus)
- 2.99
- 2.37
- 5.21
- 4.82
- 5.76

t-SNE visualizations of last hidden layer of the ACNN for IEMOCAP

t-SNE visualizations of the AE representations for IEMOCAP (AE trained on full Tedlium, no emotion information involved in training)

e for arousal than for valence
emotion labels are involved
te low and high arousal
ant to speaker sex and speaker iden-
d in visualizations)

:) f	[6]	Vassil Panayotov, Guoguo Chen, et al., "Librispeech: an asr corpus based on public domain audio books," in Proc. of International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.
- - 	[7]	Sayan Ghosh, Eugene Laksana, et al., "Learning repre- sentations of affect from speech," International Confer- ence on Learning Representations (ICLR), 2016.
-	[8]	Sefik Emre Eskimez, Zhiyao Duan, and Wendi Heinzel- man, "Unsupervised learning approach to feature anal- ysis for automatic speech emotion recognition," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.
r f S	[9]	Egor Lakomkin, Cornelius Weber, et al., "Reusing neural speech representations for auditory emotion recognition," in Proc. of the Eighth International Joint Conference on Natural Language Processing, 2017.

Contact: michael.neumann@ims.uni-stuttgart.de